Blackstone Environmental Solutions, LLC

Environmental Consulting and Licensed Site Professional Services

Erik Johnson Bureau of Waste Site Cleanup Northeast Regional Office MA Department of Environmental Protection 150 Presidential Way Woburn, MA 01801 October 18, 2023 Project #1843

RE: Imminent Hazard Evaluation Results

Vacant Parcels 14 and 16 Barnes Road Salem, MA 01970 RTN 3-38273

Dear Mr. Johnson:

Blackstone Environmental Solutions LLC (BES) on behalf of JL Realty Trust, JMI Realty Trust, and Barnes Road Trust is providing this Imminent Hazard Evaluation Results submittal associated with the release of oil and/or hazardous material (OHM) reported under Massachusetts Department of Environmental Protection (MassDEP) Release Tracking Number 3-38273 at portions of the vacant land located at 14 Barnes Road and 16 Barnes Road in Salem, Massachusetts. These two properties are part of the larger Disposal Site associated with RTN 3-38273 and include portions of the properties at 9 Cedar Road, 12 Cedar Road, 14 Cedar Road, 15 Cedar Road, and 16 Cedar Road. While most of these areas are exceptionally difficult to reach on foot, due to dense trees and vegetation, wetlands, surface water body, steep slopes and no roadways, the information here reported concerns the areas which, with trespass, could be accessed although with difficulty and no trails.

BES in coordination with its subcontracted risk assessor, O'Reilly, Talbot, & Okun Associates (OTO) of Westborough, MA has attached the Imminent Hazard Evaluation Results prepared for 14 and 16 Barnes Road along with the supporting figures and soil laboratory analytical report. Specifically, this IHE was performed to evaluate the risks associated the potential trespasser exposure pathway via dermal contact to soil at 14 Barnes Road and 16 Barnes Road. The laboratory soil sampling activities was performed at the aforementioned properties on September 27, 2023. A summary of findings outlined in the Imminent Hazard Evaluation are noted below:

• A condition of No Imminent Hazard exists for human health, safety, and the environment for the surficial soil at 14 Barnes Road and 16 Barnes Road properties at the Site.

Blackstone Environmental Solutions, LLC 76 Bay View Drive Shrewsbury MA 01545 (508) 612-4738 · www.bes-env.com MassDEP Bureau of Waste Site Cleanup (BWSC) Form 105 has been filed with this submittal via eDEP for RTN 3-38273. Should you have any questions or require additional information, please do not hesitate to contact the undersigned.

Sincerely, Blackstone Environmental Solutions, LLC

Michael C. Bricher, LSP, P.G. Principal

List Of Attachments

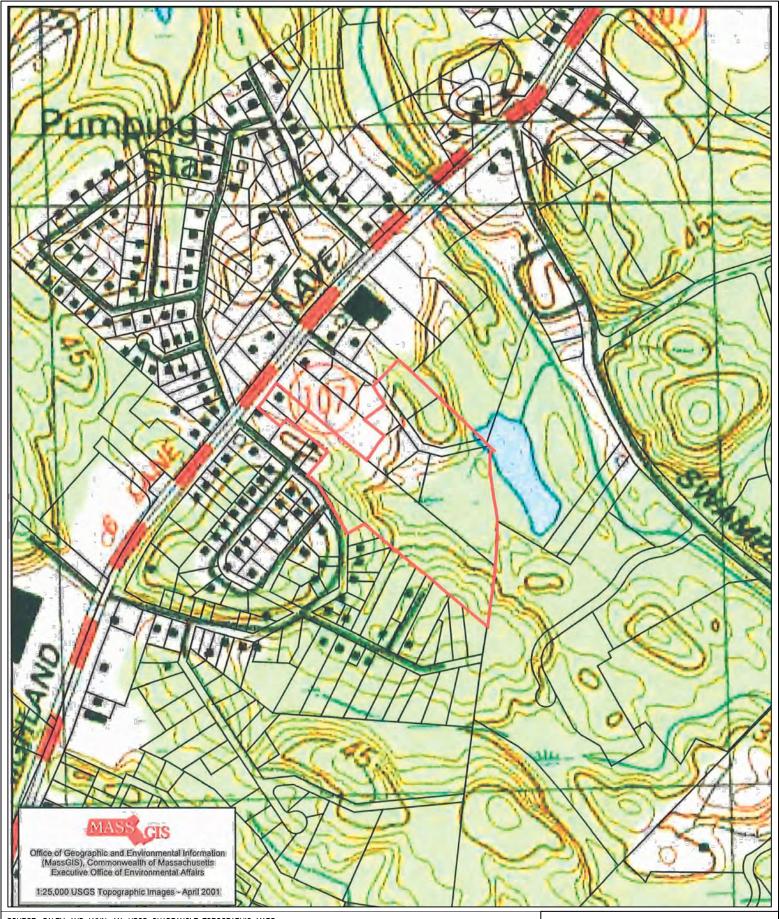
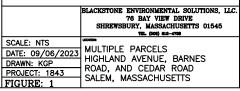
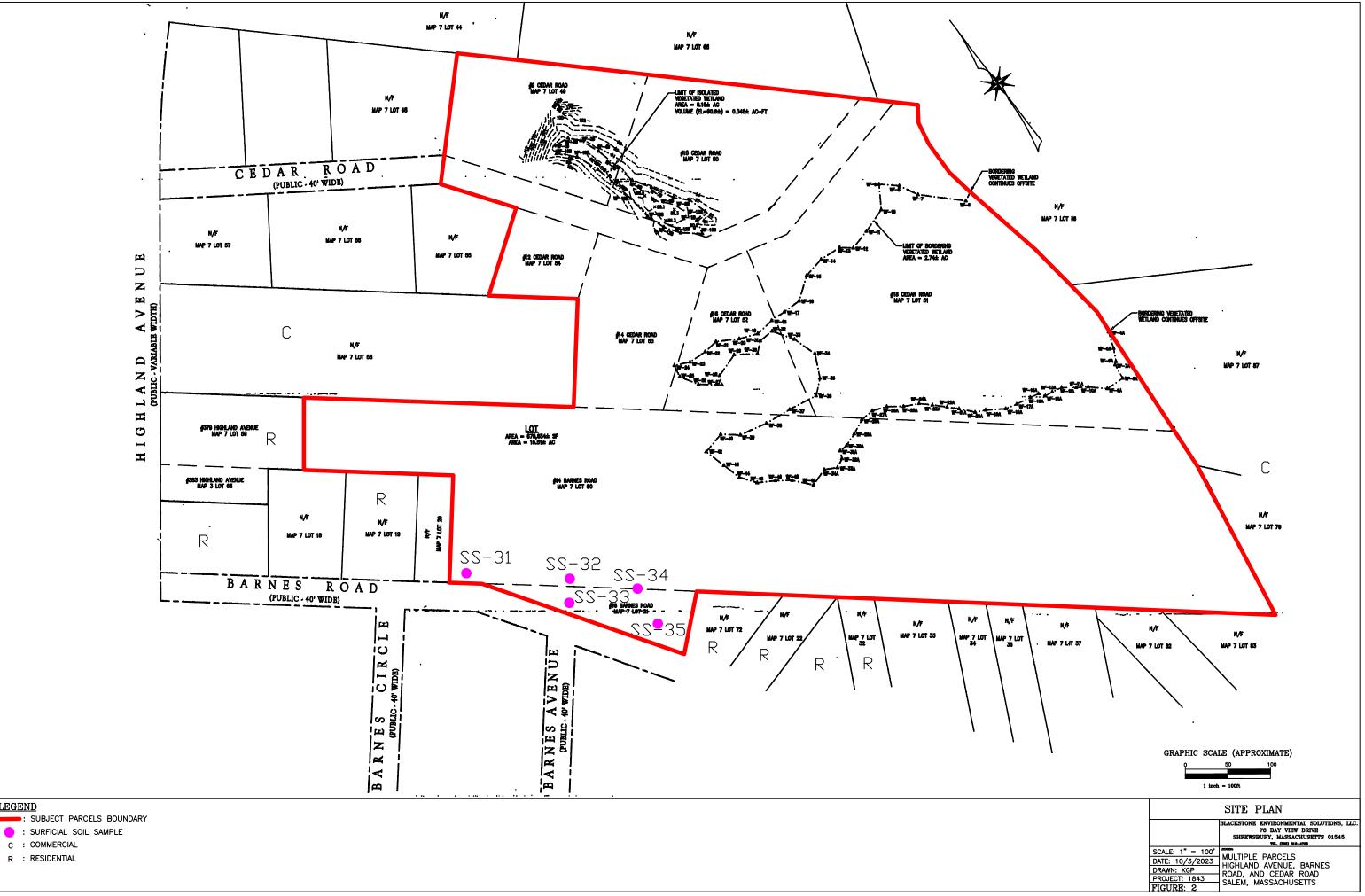

Figures

Figure 1: Site Locus Figure 2: Site Plan

Appendix A- Imminent Hazard Evaluation prepared by O'Reilly Talbot & Okun Associates **Appendix B-** Soil Laboratory Analytical Report


 CC: Kathleen Ingemi, 381 Highland Avenue, Salem, MA 01970 Jamy Buchanan Madeja, Esq., Buchanan & Associates, 100 Cambridge Street, Suite 1400, Boston, MA 02114 Board of Health, City of Salem, Public Health Agent, Mr. David Greenbaum, RS. <u>dgreenbaum@Salem.com</u> City Solicitor, Elizabeth Rennard, City Hall, 93 Washington Street, Salem, MA 01970 <u>brennard@salem.com</u>


FIGURES

SOURCE: SALEM AND LYNN, MA USGS QUADRANGLE TOPOGRAPHIC MAPS

SITE LOCUS

<u>LEGEND</u>

C : COMMERCIAL

R : RESIDENTIAL

APPENDIX A

October 17, 2023 File No: 5210-11-01

Prepared for:

Blackstone Environmental Solutions, LLC 76 Bay View Drive Shrewsbury, Massachusetts 01545

IMMINENT HAZARD EVALUATION Vacant Parcels 14 and 16 Barnes Road Salem, Massachusetts MassDEP RTN 3-38273

Prepared by: O'Reilly, Talbot & Okun Associates, Inc. Westborough, MA 01581

TABLE OF CONTENTS

Page

-	DUCTION IRFICIAL SOIL SAMPLING	1 2
	SPECIFIC IMMINENT HAZARD EVALUATION FOR HUMAN HEALTH MINENT HAZARD EVALUATION FOR TRESPASSERS	3 4
3.0 SITE-	SPECIFIC IMMINENT HAZARD EVALUATION FOR SAFETY	5
4.0 SITE-	SPECIFIC IMMINENT HAZARD EVALUATION FOR ENVIRONMENT	5
5.0 CONC	LUSIONS	5
REFERE	ICES	6

TABLES

Table 1 Soil Exposure Point Concentrations (EPCs)

ATTACHMENTS

Attachment 1 Method 3 Imminent Hazard Assessment for Trespasser Exposed to Chemicals in Soil - Shortform 2012 (sf12tsih), Vlookup Version 0315

1.0 INTRODUCTION

This report presents an Imminent Hazard Evaluation (IHE) for the release of oil and/or hazardous material (OHM) at portions of the 14 Barnes Road and 16 Barnes Road properties in Salem, Massachusetts. These two properties are part of the larger Massachusetts Department of Environmental Protection (MassDEP) Disposal Site assigned Release Tracking Number (RTN) 3-38273 (the "Site"). The Site includes portions of the properties at 14 Barnes, 9 Cedar Road, 12 Cedar Road, 14 Cedar Road, 15 Cedar Road, and 16 Cedar Road.

The IHE was completed as part of the Immediate Response Action (Plan) submitted by Blackstone Environmental Solutions LLC (BES) to MassDEP in October 2023. The Site information provided in the IRA and the subsequent soil data provided by BES for 14 and 16 Barnes Road were used in the IHE.

The IHE was completed in accordance with MassDEP regulations under the Massachusetts Contingency Plan (MCP: 310 CMR 40.0950) and applicable MassDEP guidance.

On August 11, 2023, MassDEP was notified on behalf of Barnes Road Trust that the vacant property located at 14 Barnes Road has triggered a MCP 2-hour reporting condition (i.e., potential Imminent Hazard Condition). The 14 Barnes Road property is located immediately adjacent to 14 Cedar Road. The dataset generated as part of an assessment by Weston & Sampson on October 9, 2020, includes a total polychlorinated biphenyls (PCB) concentration of 118.3 mg/kg that was collected in the top 6 inches of material at location N-9. This PCB concentration is above the notification threshold for the purpose of fulfilling the "Two Hour" release notification obligations of 310 CMR 30.0311(7), as a "Could Pose" Imminent Hazard to human health.

MassDEP verbally approved environmental response actions to be conducted under RTN 3-38273 for 12 Cedar Road, 14 Cedar Road, and 14 Barnes Road, and includes but not limited to an expedited subsurface investigation program to address the potential Imminent Hazard condition to human health at the Site. The assessment activities will be performed to further investigate the source of the shallow heavy metals, including chromium and lead, and PCB impacted soils. Also, MassDEP has approved the installation of a security fence along the southern boundary of 16 Barnes Road in order to restrict access to 14 Barnes Road via a trespasser scenario.

On August 28, 2023, a Site inspection was conducted with representatives of MassDEP, Ash Desmond (Bureau of Waste Site Cleanup BWSC][) and Andrew Danikas (asbestos inspector), and Michael Bricher, LSP, of BES. The inspection consisted of a walkthrough of 14 Barnes, 16 Barnes Road, 9 Cedar Road, 12 Cedar Road, and 15 Cedar Road. Due to the dense forest land, poison ivy/oak vegetation, thorns, ticks, wetlands, and terrain (i.e., physical barriers), access was limited at each of the aforementioned properties. A summary of Site observations for 14 and 16 Barnes Road is noted below.

16 Barnes Road: This property was accessed from the south along Barnes Road. MassDEP and BES reviewed the area along the southern property boundary for the installation of a potential fence installation. We agreed that there would need to be a significant amount of tree/vegetation removal and to go around a bedrock outcrop to complete the fence installation along the southern property boundary line. It was also noted that a significant elevation drop at approximately 100 feet from the road going straight in towards 14/16 Barnes Road property boundary and that it would be unsafe to access 14 Barnes Road from the southwest. Also, we noted multiple construction/ demolition/solid waste debris (i.e., brick, asphalt, concrete/tires/metal, broken tiles) along the property boundary for 14 and 16 Barnes Road. Asbestos Inspector Danikas collected two samples of the tile and roofing material for asbestos. It was later confirmed by MassDEP that the tile sample tested positive for asbestos.

According to the property owner, Kathleen Ingemi for JMI Realty Trust, this area of 16 Barnes Road has been subject to illegal dumping activities over the years by nearby owners. Nonetheless, this area of the Site will need to be assessed by a licensed asbestos inspector/management company.

14 Barnes Road: MassDEP and BES accessed 14 Barnes Road from the west via 379-381 Highland Avenue. Access was limited to the westernmost portion of 14 Barnes Road due to physical barriers. There was some solid waste debris (tires, metal, brick, concrete, abandoned storage shed) observed in this area, but MassDEP asbestos inspector did not identify any potential asbestos containing material at the surface.

Containment Measure Actions: At the time of release notification for 14 Barnes Road, BES presented a verbal IRA Plan to MassDEP to erect a 6-foot-high chain-link security fence along the southern boundary of 16 Barnes Road to restrict access to the heavy metal and PCB impacted surficial soil areas reported at the Site. Based on the MassDEP/BES Site Visit on August 28, 2023, there are logistical challenges (i.e., physical barriers) with installing a security fence along the southern boundary of 16 Barnes Road. Based on feedback received by BES from Mr. Erik Johnson of MassDEP BWSC on August 30, 2023, MassDEP would consider using the existing physical barriers on 16 Barnes Road in lieu of a security fence if surficial soil data shows that the heavy metals and PCBs are below Imminent Hazard levels.

Following the completion of the upcoming IH Evaluation for potential trespasser exposure via dermal contact to soil at 14 and 16 Barnes Road, the need to supplement the existing physical barriers with additional containment measures will be assessed.

2.0 SURFICIAL SOIL SAMPLING

On September 27, 2023, BES personnel conducted a surficial soil assessment program on 14 and 16 Barnes Road. The assessment program area was divided into 5 zones for surficial soil sampling. These five sampling zones were identified as SS-31, SS-32, SS-33, SS-34, and SS-35. The sampling zones were strategically selected to represent areas that would most easily be accessed in a trespasser scenario from

Barnes Road. Approximately 330 feet of street frontage exists along the southern boundary for 16 Barnes Road. Refer to IRA Plan Figure 2-Soil Sample Location Map for a depiction of the five sampling zones.

As previously noted, this area of the Site consists of thick wooded vegetation with exposed bedrock outcroppings. Also, multiple construction/demolition/solid waste debris material (i.e., brick, asphalt, concrete/tires/metal, broken tiles) was observed during this assessment program.

The soil samples were collected at a depth of 0 to 1' below grade using a hand auger. The soil samples comprised mostly of organics with some silts, sands, and gravel. There were no overt petroleum odors, soil staining, or visual evidence of release of oil and/or hazardous material at these locations. Also, soil samples were field screened for total volatile organic compounds (TVOCs) with a photoionization detector (PID) equipped with a 10.6 eV lamp and calibrated to 100 ppmv isobutylene utilizing the MassDEP approved "Jar Headspace Analytical Screening Procedure". The PID screening reading results for all soil samples were non-detect (0.0 parts per million (ppm).

A total of five soil samples (i.e., SS-31 through SS-35) were collected and submitted to New England Testing Laboratory (NET Lab) of West Warwick, RI under standard chain of custody (COC) procedures for the following analyses: MCP 14 Metals by EPA Method 6000/7000; and polychlorinated biphenyls (PCBs) by EPA Method 8082A. In addition, soil sample SS-32 as submitted for SVOC laboratory analysis via EPA Method 8270. These soil sample laboratory analytical results will be presented in the IRA Status Report #1, anticipated for MassDEP submittal on or before December 5, 2023.

The analytical results for detected analytes are presented in Table 1. It is noted on this table that PCBs were not detected at analytical detection limits less than 86 ug/kg. Metals were detected in each sample. SVOCs, primarily polycyclic aromatic hydrocarbons (PAHs), were detected in the one sample (SS-3) analyzed for this group of compounds. It is also noted that the maximum concentration of arsenic, cadmium, and mercury are below MassDEP's Background Concentrations in "Natural" Soil (MassDEP, 2002). These three metals are not considered to be constituents of concern for this IHE.

2.0 SITE-SPECIFIC IMMINENT HAZARD EVALUATION FOR HUMAN HEALTH

The Site-specific exposures considered in this IHE (310 CMR 40.0953) are as follows. The short period of time considered in the evaluation was five years. For the evaluation of soil-related exposures, the level of OHM starting at zero to twelve inches within the ground surface were used in the development of Exposure EPCs. No hot spots were not identified for the subject portions of the Site. The IHE was focused on the detected metals (exceeding MassDEP Background Concentrations for "Natural" Soil [MassDEP, 2002]), and SVOCs as constituents of concern. Maximum detected concentrations were used as EPCs.

The IHE was conducted in a manner, which results in conservative estimates of potential exposures. The IHE clearly identifies and explains the basis for exposure parameters chosen for the Risk Characterization.

The characterization of the risk of harm to human health was conducted using a Method 3 approach, as described in 310 CMR 40.0993. The toxicity information used to characterize risk is consistent with the type and duration of exposure under evaluation, and primary consideration given to information developed by MassDEP (310 CMR 40.0955(2)(a)).

2.1 IMMINENT HAZARD EVALUATION FOR TRESPASSERS

The properties at 14 and 16 Barnes Road are currently undeveloped. However, the closest occupied residential building is less than 500 feet away. Therefore, members of the general public could trespass on these properties in the absence of barriers.

Therefore, the IHE for human health was evaluated for a trespasser that would occasionally access the properties. Direct contact risks to soil by trespassers were calculated using the MassDEP Method 3 Imminent Hazard Assessment for Trespasser Exposed to Chemicals in Soil - Shortform 2012 (sf12tsih) (Vlookup Version 0315). (Attachment 1).

The default exposure assumptions in this Shortform for subchronic noncancer effects assumes the receptor is a 11 to 12 year old, soil ingestion rate of 50 mg/day, exposure frequency of 2 days/week for 30 weeks (60 days/year), and exposure period of 1 year for noncancer subchronic effects (Table TSIH-4, Sheet: Exp). The equations to calculate noncancer risk for a trespasser are presented in Table TSIH-3, Sheet: NC Eq.

For carcinogenic effects, the receptor is a 11 to 16 year old, soil ingestion rate of 50 mg/day, exposure frequency of 2 days/week for 30 weeks (60 days/year), and exposure period of 5 years over a 70 year lifetime (Table TSIH-4, Sheet: Exp). The equations to calculate cancer risk for a trespasser are presented in Table TSIH-2, Sheet: C Eq.

Exposure point concentrations (EPCs) were selected from the five samples (SS-31 to SS-35) as the maximum detected concentrations of detected analytes (Table 1). These EPCs were input into the Shortform (Table TSIH-2, Sheet: EPCs).

The toxicity values for COCs are encoded in the Shortform (Table TSIH-5; Sheet: Chem). It is noted that chromium was evaluated in the trivalent form. Hexavalent chromium was not detected in the sediments in the Mill Pond, nor in other soil, lagoon, and sediment samples collected for the ADW Disposal Site.

Subchronic noncarcinogenic risks were calculated as the Hazard Index (HI). Cancer risks were calculated as the Excess Lifetime Cancer Risk (ELCR) (Table TSIH-2, Sheet: EPCs).

The total IH noncancer risk HI from soil exposure by trespassers is 0.08. This value is well below the MassDEP IH noncancer risk limit for HI of 10, with the Hazard Quotient for lead being less than 1. The total IH cancer risk ELCR from soil exposure by trespassers is 8E-07. This value is well below the MassDEP IH cancer risk ELCR of 1E-05.

Therefore, a condition of No Imminent Hazard was concluded for trespassers.

3.0 SITE-SPECIFIC IMMINENT HAZARD EVALUATION FOR SAFETY

In accordance with Section 310 CMR 40.0960 of MCP, the Site was also evaluated for the risk of harm to safety associated with current and reasonably foreseeable conditions at the site. In general, this evaluation considers acute hazards such as fire and explosion, the potential for exposure to acute concentrations that might be immediately threatening to life or health, and the potential for chronic exposure levels to the general public that might result from ongoing uncontrolled releases.

According to the MCP, the following Site conditions indicate a condition of No Significant Risk of harm to safety exists at the site:

- No applicable or suitably analogous safety standards were identified for the site (310 CMR 40.0960(2)); therefore, there were no exceedances of these standards.
- No rusted or corroded drums or containers, open pits, lagoons, or other dangerous structures were observed on the site (310 CMR 40.0960(3)(a)).
- There is no present threat of fire or explosion, including the presence of explosive vapors resulting from a release of OHM (310 CMR 40.0960(3)(b)).
- No uncontained material which exhibit the characteristics of corrosivity, reactivity or flammability exists at the site (310 CMR 40.0960(3)(c)).

Therefore, a condition of No Imminent Hazard exists for Safety.

4.0 SITE-SPECIFIC IMMINENT HAZARD EVALUATION FOR THE ENVIRONMENT

An IH to the environment would exist with evidence of stressed biota or immediate or acute adverse impacts to freshwater or saltwater fish populations. These conditions do not exist. Therefore, a condition of No Imminent Hazard to the environment was concluded.

5.0 CONCLUSIONS

A **condition of No Imminent Hazard exists** for human health, safety, and the environment exists for the surficial soil at 14 Barnes Road and 16 Barnes Road properties at the Site.

REFERENCES

Massachusetts Department of Environmental Protection (MassDEP). 1995. Guidance for Disposal Site Risk Characterization - In Support of the Massachusetts Contingency Plan. July 1995.

MassDEP. 2002. Background Levels of Polycyclic Aromatic Hydrocarbons and Metals in Soil. Technical Update. May 2002.

MassDEP. 2014, updated 2019. *310 CMR 40.0000, the Massachusetts Contingency Plan.* Effective June 2014. Updated December 2019.

MassDEP. 2015. *ShortForms for Human Health Risk Assessment under the MCP.* ShortForm Version 10-12. Vlookup Version v0315.

Imminent Hazard Evaluation 14 and 16 Barnes Road Salem, MA October 2023 5210-11-01

TABLES and ATTACHEMENTS

Table 1 Soil Exposure Point Concentrations (EPCs) - Metals SVOCs Vacant Parcels Cedar Road Barnes Road Salem, MA

Sample ID & Depth Sample Date								1/0-1' /2023	SS-3 9/27/	2/0-1'		33/0-1' 7/2023		34/0-1' 7/2023		35/0-1' 7/2023	Maximum Detected
Soil Material								anics	Orga			anics		anics		anics	Concentration
Compound Name	RCS-1	S-1 SOIL & GW-2	S-1 SOIL & GW-3	UCL	MassDEP "Natural' Soil Background	Units	Sample Result	Reporting Limit	Sample Result	Reporting Limit	Sample Result	Reporting Limit	Sample Result	Reporting Limit	Sample Result	Reporting Limit	
Total Metals	100-1	011-2	011-0	UUL	Dackground	OTILS	rtesuit	Linit	rtesuit	Lintit	rtosuit	Linin	rtosuit	Lintit	rtosuit	Ennic	
Antimony	20	20	20	300	1	mg/kg	7.08	1.01	2.52	1.01	ND	0.9	ND	0.85	ND	0.83	7.08
Arsenic	20	20	20	500	20	mg/kg	5.12	1.53	5.46	1.53	3.72	1.37	3.63	1.29	3.52	1.25	5.46
Barium	1000	1000	1000	10000	50	mg/kg	38.7	0.51	106	0.5	41.5	0.45	58.1	0.42	41.5	0.41	106
Beryllium	90	90	90	2000	0.4	mg/kg	ND	0.51	ND	0.5	0.49	0.45	0.5	0.42	0.47	0.41	0.5
Cadmium	70	70	70	1000	2	mg/kg	ND	0.77	1.42	0.76	0.7	0.68	0.92	0.64	0.63	0.63	1.42
Chromium	100	100	100	2000	30	mg/kg	9.78	0.77	42.6	0.76	12.4	0.68	15.7	0.64	15.8	0.63	42.6
Lead	200	200	200	6000	100	mg/kg	41.7	0.77	252	0.76	44	0.68	69.7	0.64	46.5	0.63	252
Nickel	600	600	600	10000	20	mg/kg	7.68	0.77	17.2	0.76	14.2	0.68	13.8	0.64	15.8	0.63	17.2
Vanadium	400	400	400	7000	30	mg/kg	31.7	0.51	69.2	0.5	39.7	0.45	55.9	0.42	36	0.41	69.2
Zinc	1000	1000	1000	10000	100	mg/kg	54.2	3.1	169	3.1	94.8	2.7	104	2.6	81.9	2.5	169
Mercury	20	20	20	300	0.3	mg/kg	ND	0.185	0.253	0.156	ND	0.152	ND	0.16	ND	0.161	0.253
Semivolatile organic cor																	
Acenaphthene	4000	1000000	1000000	1.00E+07	500	ug/kg			1,420	828							1,420
Acenaphthylene	1000	600000	10000	1.00E+07	500	ug/kg			912	828							912
Anthracene	1000000	1000000	1000000	1.00E+07	1,000	ug/kg			4,590	828							4,590
Benzo(a)anthracene	7000	7000	7000	3000000	2,000	ug/kg			12,500	828							12,500
Benzo(a)pyrene	2000	2000	2000	300000	2,000	ug/kg			12,700	828							12,700
Benzo(b)fluoranthene	7000	7000	7000	3000000	2,000	ug/kg			16,400	828							16,400
Benzo(g,h,i)perylene	1000000	1000000	1000000	1.00E+07	1,000	ug/kg			9,340	828							9,340
Benzo(k)fluoranthene	70000	70000	70000	1.00E+07	1,000	ug/kg			5,990	828							5,990
Biphenyl	50	6000	1000000	1.00E+07		ug/kg			233	191							233
Chrysene	70000	70000	70000	1.00E+07	2,000	ug/kg			13,800	828							13,800
Dibenz(a,h)anthracene	700	700	700	300000	500	ug/kg			2,420	828							2,420
Dibenzofuran	100000					ug/kg			1,340	828							1,340
Fluoranthene	1000000	1000000	1000000	1.00E+07	4,000	ug/kg			25,200	828							25,200
Fluorene	1000000	1000000	1000000	1.00E+07	1,000	ug/kg			2,030	828							2,030
Indeno(1,2,3-cd)pyrene	7000	7000	7000	3000000	1,000	ug/kg			9,040	828							9,040
Naphthalene	4000	20000	500000	1.00E+07	500	ug/kg			1,150	828							1,150
Phenanthrene	10000	500000	500000	1.00E+07	3,000	ug/kg			22,000	828							22,000
Pyrene	1000000	1000000	1000000	1.00E+07	4,000	ug/kg			25,600	828							25,600

Notes:

mg/kg= milligrams per kilogram (parts per million) ND = not detected above the lab reporting limits shown Bold/Highlighted values exceed MassDEP Most Stringent Standard UCL- MassDEP Upper Concentration Limit

- = Analyte not sampled for ug/Kg = micrograms per kilogram (parts per billion)
NE = No Method 1 Standard or UCL available

14 Barnes Road =

16 Barnes Road =

Table 1A Summary of Soil Sample Analytical Results-PCBs Vacant Parcels Cedar Road Barnes Road

								Salem, MA											
Sample ID & Depth Sample Date Soil Material							9/27	1/0-1' 7/2023 anics	9/27	2/0-1' 7/2023 Janics	9/27	3/0-1' 7/2023 anics	9/27	4/0-1' 7/2023 anics	9/27	5/0-1' 7/2023 anics			
	D00 (S-1 SOIL & GW-	S-1 SOIL & GW-3	S-2 SOIL & GW-2	S-2 SOIL & GW-3	S-3 SOIL & GW-2	S-3 SOIL & GW-3	19		Sample	Reporting Limit	Sample Result	Reporting Limit	Sample	Reporting Limit	Sample	Reporting Limit	Sample	Reporting
Compound Name	RCS-1	2						UCL	Units	Result				Result		Result	Limit	Result	Limit
Aroclor-1016	1000	1000	1000	4000	4000	4000	4000	100000	ug/kg	ND	86	ND	82	ND	79	ND	77	ND	78
Aroclor-1221	1000	1000	1000	4000	4000	4000	4000	100000	ug/kg	ND	86	ND	82	ND	79	ND	77	ND	78
Aroclor-1232	1000	1000	1000	4000	4000	4000	4000	100000	ug/kg	ND	86	ND	82	ND	79	ND	77	ND	78
Aroclor-1242	1000	1000	1000	4000	4000	4000	4000	100000	ug/kg	ND	86	ND	82	ND	79	ND	77	ND	78
Aroclor-1248	1000	1000	1000	4000	4000	4000	4000	100000	ug/kg	ND	86	ND	82	ND	79	ND	77	ND	78
Aroclor-1254	1000	1000	1000	4000	4000	4000	4000	100000	ug/kg	ND	86	ND	82	ND	79	ND	77	ND	78
Aroclor-1260	1000	1000	1000	4000	4000	4000	4000	100000	ug/kg	ND	86	ND	82	ND	79	ND	77	ND	78
Aroclor-1262	1000	1000	1000	4000	4000	4000	4000	100000	ug/kg	ND	86	ND	82	ND	79	ND	77	ND	78
Aroclor-1268	1000	1000	1000	4000	4000	4000	4000	100000	ug/kg	ND	86	ND	82	ND	79	ND	77	ND	78
PCBs (Total)	1000	1000	1000	4000	4000	4000	4000	100000	ug/kg	ND	86	ND	82	ND	79	ND	77	ND	78

16 Barnes Road =	
12 Cedar Road =	

14Cedar Road=

Notes: mg/kg= milligrams per kilogram (parts per million) ND = not detected above the lab reporting limits shown UCL- MassDEP Upper Concentration Limit Bold/Highlighted values exceed MassDEP/EPA Unrestictive Use -- = Analyte not sampled for ug/Kg = micrograms per kilogram (parts per billion) NE = No Method 1 Standard or UCL available 14 Barnes Road = 16 Barnes Road =

Method 3 Imminent Hazard Risk Assessment for a Trespasser Exposed to Chemicals in Soil Shortform 2012 (sf12tsih)

Index

EPCs Table TSIH-1: Select chemicals and enter Exposure Point Concentrations (EPCs). Estimated risks are shown to the right.

C Eq Table TSIH-2: Equations to calculate cancer risks

- NC Eq Table TSIH-3: Equations to calculate noncancer risks
- **Exp** Table TSIH-4: Definitions and exposure factors
- Chem Table TSIH-5: Chemical-specific data

Tab

Cyanide Table TSIH-6: Cyanide calculations

Spreadsheets designed by Andrew Friedmann, MassDEP Questions and Comments may be addressed to: Lydia Thompson Massachusetts Department of Environmental Protection Office of Research and Standards One Winter Street Boston, MA 02108 USA Telephone: (617) 556-1165 Fax: (617) 556-1006 Email: Lydia.Thompson@state.ma.us

Trespasser - Soil: Table TSIH-1 Exposure Point Concentration (EPC) Based on Trespasser Ages 11-16 (Cancer) and 11-12 (Non-Cancer)

ShortForm Version 10-12 Vlookup Version v0315

2.8E-07

7.2E-06

1.3E-06

8.9E-05

1.8E-06

4.7E-06

2.0E-06

2.6E-05

3.0E-05

ELCR (all chemicals) = 7.8E-07

HI (all chemicals) = 8.3E-02

1.1E-07

2.3E-06

4.0E-07

6.2E-05

1.2E-06

1.5E-06

1.4E-06

1.8E-05

2.1E-05

Do not insert or delete any rows

BIPHENYL, 1,1-

FLUORANTHENE

NAPHTHALENE

PHENANTHRENE

DIBENZO(a,h)ANTHRACENE

INDENO(1,2,3-cd)PYRENE

CHRYSENE

FLUORENE

PYRENE

EPC				Subch			
(mg/kg)	ELCR _{ingestion}	ELCR _{dermal}	ELCR _{total}	HQ _{ing}	HQ _{derm}	HQ _{total}	
7.08				6.3E-03	4.4E-03	1.1E-02	
106				5.4E-04	3.7E-04	9.1E-04	
0.5				3.5E-05	2.5E-05	6.0E-05	
42.6				7.6E-04	5.2E-04	1.3E-03	N
252				6.0E-02	5.0E-03	6.5E-02	N
17.2				3.0E-04	4.2E-04	7.3E-04	
69.2				2.7E-03	1.9E-03	4.6E-03	
169				2.0E-04	1.4E-04	3.4E-04	
1.42				7.6E-07	1.7E-06	2.5E-06	
0.912				3.2E-07	7.5E-07	1.1E-06	
4.59				4.9E-07	1.1E-06	1.6E-06	
12.5	3.3E-08	1.7E-08	5.1E-08	4.4E-06	2.0E-06	6.5E-06	
12.7	3.4E-07	1.8E-07	5.2E-07	4.5E-06	2.1E-06	6.6E-06	
16.4	4.4E-08	2.3E-08	6.7E-08	5.8E-06	2.7E-06	8.5E-06	
9.34				3.3E-06	7.7E-06	1.1E-05	
5.99	1.6E-09	8.3E-10	2.4E-09	2.1E-06	9.8E-07	3.1E-06	
	(mg/kg) 7.08 106 0.5 42.6 252 17.2 69.2 169 1.42 0.912 4.59 12.5 12.7 16.4 9.34	(mg/kg) ELCR _{ingestion} 7.08 106 106 0.5 42.6 252 17.2 69.2 169 1.42 0.912 4.59 12.5 3.3E-08 12.7 3.4E-07 16.4 4.4E-08 9.34 9.34	(mg/kg) ELCR _{ingestion} ELCR _{dermal} 7.08 106	(mg/kg) ELCR _{ingestion} ELCR _{dermal} ELCR _{total} 7.08 106	EPC (mg/kg) ELCR _{ingestion} ELCR _{dermal} ELCR _{total} Subcr HQ _{ing} 7.08 ELCR _{ingestion} ELCR _{dermal} ELCR _{total} HQ _{ing} 7.08 5.4E.04 5.4E.04 5.4E.04 0.5 5.4E.04 3.5E-05 3.5E-05 42.6 7.6E.04 5.4E.04 252 6.0E-02 7.6E.04 69.2 2.7E-03 3.0E-04 69.2 2.7E-03 3.0E-04 1.42 3.2E-07 3.2E-07 1.42 3.2E-07 4.9E-07 1.55 3.3E-08 1.7E-08 5.1E-08 4.4E-06 12.7 3.4E-07 1.8E-07 5.2E-07 4.5E-06 16.4 4.4E-08 2.3E-08 6.7E-08 5.8E-06 9.34 5.8E-06 3.3E-06 5.8E-06	(mg/kg) ELCR _{ingestion} ELCR _{dermal} ELCR _{total} HQ _{ing} HQ _{derm} 7.08 5.4E-04 3.7E-04 3.5E-05 5.4E-04 3.7E-04 0.5 5.4E-04 3.5E-05 2.5E-05 42.6 7.6E-04 5.2E-04 252 6.0E-02 5.0E-03 1.9E-03 3.0E-04 4.2E-04 69.2 2.7E-03 1.9E-03 1.9E-03 1.9E-03 169 2.0E-04 1.4E-04 1.4E-04 1.42 7.6E-07 1.7E-06 0.912 4.59 4.9E-07 1.1E-06 3.2E-07 7.5E-07 4.59 4.4E-08 5.1E-08 4.4E-06 2.0C-06 12.7 3.4E-07 1.8E-07 5.2E-07 4.5E-06 2.1E-06 16.4 4.4E-08 2.3E-08 6.7E-08 5.8E-06 2.7E-06 9.34 5.8E-06 2.7E-06 3.3E-06 7.7E-06 3.3E-06 7.7E-06	EPC (mg/kg) ELCR _{ingestion} ELCR _{dermal} ELCR _{total} RU _{cing} RQ _{derm} RQ _{total} 7.08 6.3E-03 4.4E-03 1.1E-02 106 5.4E-04 3.7E-04 9.1E-04 0.5 5.4E-04 3.7E-04 9.1E-04 0.5 2.5E-05 6.0E-05 4.26 7.6E-04 5.2E-04 1.3E-03 252 6.0E-02 5.0E-03 6.5E-02 1.7.2 3.0E-04 4.2E-04 7.3E-04 69.2 2.7E-03 1.9E-03 4.6E-03 4.6E-03 4.6E-03 169 2.0E-04 1.4E-04 3.4E-04 3.4E-04 1.42 7.6E-07 1.7E-06 2.5E-06 0.912 3.3E-08 1.7E-08 5.1E-08 4.4E-06 2.0E-06 0.912 3.3E-08 1.7E-08 5.1E-08 4.4E-06 2.0E-06 6.5E-06 1.2.5 3.3E-08 1.7E-08 5.1E-08 4.4E-06 2.0E-06 6.5E-06 12.7 3.4E-07 1.8E-07 5.2E-07

2.3E-11

3.7E-09

6.5E-08

2.4E-08

1.8E-11

1.9E-09

3.4E-08

1.3E-08

4.0E-11

5.6E-09

9.8E-08

3.7E-08

1.7E-07

4.9E-06

8.6E-07

2.7E-05

5.4E-07

3.2E-06

6.1E-07

7.8E-06

9.1E-06

0.233

13.8

2.42

25.2

2.03

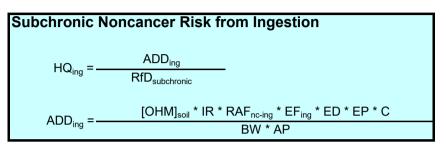
9.04

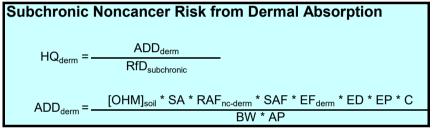
1.15

22

25.6

Note! Cr(VI) limit is 200 mg/kg due to contact dermititis. Note! Lead IH HQ limit is 1, not 10.


Trespasser - Soil: Table TSIH-2 Equations to Calculate Cancer Risk for a Trespasser (Age 11-16 years)


Cancer Risk from Ingestion
ELCR _{ing} = LADD _{ing} * CSF
LADD _{ing} =[OHM] _{soil} * IR * RAF _{c-ing} * EF _{ing} * ED * EP * C BW * AP _{lifetime}
Cancer Risk from Dermal Absorption
ELCR _{derm} = LADD _{derm} * CSF
LADD _{derm} = <u>[OHM]_{soil} * SA * RAF_{c-derm} * SAF * EF_{derm} * ED * EP * C BW * AP_{lifetime}</u>

	V	lookup Version v0315
Parameter	Value	Units
CSF	OHM specific	(mg/kg-day) ⁻¹
LADD	OHM specific	mg/kg-day
[OHM] _{soil}	OHM specific	mg/kg
IR	50	mg/day
RAF _{c-ing}	OHM specific	dimensionless
RAF _{c-derm}	OHM specific	dimensionless
EF _{ing,derm}	0.164	event/day
ED	1	day/event
EP	5	years
С	0.000001	kg/mg
BW	48.2	kg
AP _(lifetime)	70	years
SA	2796	cm ² / day
SAF	0.14	mg/cm²

MassDEP ORS Contact: Lydia Thompson Lydia.Thompson@state.ma.us 617-556-1165

Trespasser - Soil: Table TSIH-3 Equations to Calculate Subchronic Noncancer Risk for a Trespasser (Age 11-12 years)

	Vlookup Version v031									
Parameter	Value	Units								
RfD	OHM specific	mg/kg-day								
ADD	OHM specific	mg/kg-day								
[OHM] _{soil}	OHM specific	mg/kg								
IR	50	mg/day								
RAF _{nc-ing}	OHM specific	dimensionless								
RAF _{nc-derm}	OHM specific	dimensionless								
EF _{ing,derm}	0.286	event/day								
ED	1	day/event								
EP	0.577	years								
С	0.000001	kg/mg								
BW	40.3	kg								
AP	0.577	year								
SA	2477	cm ² / day								
SAF	0.14	mg/cm ²								

Trespasser - Soil: Table TSIH-4 Definitions and Exposure Factors

Parameter	Value	Units	Notes
ELCR - Excess Lifetime Cancer Risk	chemical specific	dimensionless	Pathway specific (ing =ingestion, derm=dermal, inh=inhalation)
CSF - Cancer Slope Factor	chemical specific	(mg/kg-day)⁻¹	see Table RS-7
LADD - Lifetime Average Daily Dose	chemical specific	mg/kg-day	Pathway specific
HQ - Hazard Quotient	chemical specific	dimensionless	Pathway specific (ing =ingestion, derm=dermal, inh=inhalation)
RfD - Reference Dose	chemical specific	mg/kg-day	see Table RS-7
ADD - Average Daily Dose	chemical specific	mg/kg-day	Pathway specific
EPC - Exposure Point Concentration	chemical specific	mg/kg	
IR - Soil Ingestion Rate	50	mg/day	MADEP. 2002. Technical Update: Calculation of an Enhanced Soil Ingestion Rate.
			(http://www.mass.gov/dep/ors/orspubs.htm)
RAF _c - Relative Absorption Factor for Cancer Effects	chemical specific	dimensionless	
EF _{subchronic} - Exposure Frequency for subchronic ingestion or dermal exposure	0.286	event/day	2 days/week
EF _{cancer} - Exposure Frequency for cancer, ingestion or dermal exposure	0.164	event/day	2 days/week, 30 weeks/year
		-	
ED - Exposure Duration	1	day/event	
EP ₍₁₁₋₁₂₎ - Exposure Period for age group 11-12	0.577	years	30 weeks
EP ₍₁₁₋₁₆₎ - Exposure Period for age group 11-16	5	years	
		,	
BW ₍₁₁₋₁₂₎ - Body Weight for age group 11-12	40.3	kg	U.S. EPA. 1997. Exposure Factors Handbook. Table 7-7
BW ₍₁₁₋₁₆₎ - Body Weight for age group 11-16	48.2	kg	Ibid
AP _{subchronic} - Averaging Period for subchronic noncancer	0.577	years	30 weeks
AP _{cancer} - Averaging Period for lifetime	70	years	
ancer , to aging roned to meane	10	years	
SA ₍₁₁₋₁₂₎ - Surface Area for age group 11-12	2477	cm ² / day	50th percentile of forearms, hands, and feet for females.
- (11-12)		,	MADEP 1995 Guidance for Disposal Site Risk Characterization, Table B-2.
SA ₍₁₁₋₁₆₎ - Surface Area for age group 11-16	2796.1	cm ² / day	Ibid
(,	
SAF - Surface Adherence Factor, Trespasser	0.14	mg/cm²	SAF developed for ShortForm according to procedure outlined in MA DEP Technical Update: Weighted Skin-Soil Adherence Factors, April 2002.

Trespasser - Soil: Table TSIH-5 Chemical-Specific Data

Vlookup Version v0315

Oil or Hazardous Material	CSF (mg/kg-day) ⁻¹	RAF _{c-ing}	RAF _{c-derm}	Subchronic RfD mg/kg-day	Subchronic RAF _{nc-ing}	Subchronic RAF _{nc-derm}
ANTIMONY				4.0E-04	1	0.1
BARIUM				7.0E-02	1	0.1
BERYLLIUM				5.0E-03	1	0.1
CHROMIUM (TOTAL)				2.0E-02	1	0.1
LEAD				7.5E-04	0.5	0.006
NICKEL				2.0E-02	1	0.2
VANADIUM				9.0E-03	1	0.1
ZINC				3.0E-01	1	0.1
ACENAPHTHENE				2.0E-01	0.3	0.1
ACENAPHTHYLENE				3.0E-01	0.3	0.1
ANTHRACENE				1.0E+00	0.3	0.1
BENZO(a)ANTHRACENE				3.0E-01	0.3	0.02
BENZO(a)PYRENE				3.0E-01	0.3	0.02
BENZO(b)FLUORANTHENE				3.0E-01	0.3	0.02
BENZO(g,h,i)PERYLENE				3.0E-01	0.3	0.1
BENZO(k)FLUORANTHENE				3.0E-01	0.3	0.02
BIPHENYL, 1,1-				5.0E-01	1	0.1
CHRYSENE				3.0E-01	0.3	0.02
DIBENZO(a,h)ANTHRACENI				3.0E-01	0.3	0.02
FLUORANTHENE				1.0E-01	0.3	0.1
FLUORENE				4.0E-01	0.3	0.1
INDENO(1,2,3-cd)PYRENE				3.0E-01	0.3	0.02
NAPHTHALENE				2.0E-01	0.3	0.1

Trespasser - Soil: Table TSIH-6 Cyanide Calculations

The soil cyanide concentration limit set to protect a trespasser against an acute, potentially lethal one-time dose of cyanide from incidental ingestion of contaminated soil is $8,000 \text{ mg/kg}_{soil}$. This is the concentration of available cyanide in soil below which acute human health effects would not be expected following a one-time exposure. This soil concentration is calculated using the equation below with a one-time soil ingestion estimate of 50 mg_{soil} and an available cyanide dose limit of 0.01 mg/kg_{body weight}.

MassDEP's guidance on evaluating the risk from a one-time cyanide dose considers cyanide's potentially lethal effects as well as information on cyanide metabolism:

Cyanides are detoxified rapidly by the body, and a large acute dose which overwhelms the detoxification mechanism is potentially more toxic than the same dose distributed over a period of hours. (MassDEP *Background Documentation for the Development of an Available Cyanide Benchmark Concentration,* originally dated October 1992, Modified August 1998)

Assessment of a potential one-time dose requires an estimate of the maximum soil concentration the trespasser could contact at any one time. The average soil concentration within a typical exposure area will underestimate the potential one-time dose. Therefore, to assess the acute risk of a one-time potentially lethal dose, the EPC for cyanide should be a conservative estimate of the maximum soil concentration.

The trespasser soil concentration limit to protect against adverse effects from an acute (one-time) exposure to cyanide is 8000 mg/kg.

Concentration Calculation for Cyanide	Parameter	Value	Units
	HQ (Hazard Quotient)	1	(unitless)
Concentration = HQ x Acute Dose Limit x BW	Acute Dose Limit	0.01	mg avail. CN/ kg BW
IR x RAF x Conversion Factor	BW (Body Weight) 11-12	40.3	kg
	IR (1-time reasonable max)	50	mg
	Conversion Factor	1.0E-06	kg soil / mg soil
	RAF	1	(unitless)

The toxicological basis for estimating an allowable one-time is documented in MassDEP's 1992 Background Documentation for the Development of an "Available Cyanide" Benchmark Concentration, which is published at: http://www.mass.gov/eea/docs/dep/toxics/stypes/dscyanide.pdf

Trespasser - Soil: Table TSIH-6 Cyanide Calculations

The soil cyanide concentration limit set to protect a trespasser against an acute, potentially lethal one-time dose of cyanide from incidental ingestion of contaminated soil is $8,000 \text{ mg/kg}_{soil}$. This is the concentration of available cyanide in soil below which acute human health effects would not be expected following a one-time exposure. This soil concentration is calculated using the equation below with a one-time soil ingestion estimate of 50 mg_{soil} and an available cyanide dose limit of 0.01 mg/kg_{body weight}.

MassDEP's guidance on evaluating the risk from a one-time cyanide dose considers cyanide's potentially lethal effects as well as information on cyanide metabolism:

Cyanides are detoxified rapidly by the body, and a large acute dose which overwhelms the detoxification mechanism is potentially more toxic than the same dose distributed over a period of hours. (MassDEP *Background Documentation for the Development of an Available Cyanide Benchmark Concentration,* originally dated October 1992, Modified August 1998)

Assessment of a potential one-time dose requires an estimate of the maximum soil concentration the trespasser could contact at any one time. The average soil concentration within a typical exposure area will underestimate the potential one-time dose. Therefore, to assess the acute risk of a one-time potentially lethal dose, the EPC for cyanide should be a conservative estimate of the maximum soil concentration.

The trespasser soil concentration limit to protect against adverse effects from an acute (one-time) exposure to cyanide is 8000 mg/kg.

APPENDIX B

REPORT OF ANALYTICAL RESULTS

NETLAB Work Order Number: 3l29014 Client Project: 1843 - 16 Barnes Rd, Salem

Report Date: 06-October-2023

Prepared for:

Michael Bricher Blackstone Environmental Solutions 76 Bay View Drive Shrewsbury, MA 01545

Richard Warila, Laboratory Director New England Testing Laboratory, Inc. 59 Greenhill Street West Warwick, RI 02893 rich.warila@newenglandtesting.com

Samples Submitted :

The samples listed below were submitted to New England Testing Laboratory on 09/29/23. The group of samples appearing in this report was assigned an internal identification number (case number) for laboratory information management purposes. The client's designations for the individual samples, along with our case numbers, are used to identify the samples in this report. This report of analytical results pertains only to the sample(s) provided to us by the client which are indicated on the custody record. The case number for this sample submission is 3I29014. Custody records are included in this report.

Lab ID	Sample	Matrix	Date Sampled	Date Received
3I29014-01	SS-31/0-1'	Soil	09/27/2023	09/29/2023
3129014-01	SS-32/0-1'	Soil	09/27/2023	09/29/2023
3I29014-02	SS-33/0-1'	Soil	09/27/2023	09/29/2023
3129014-04	SS-34/0-1'	Soil	09/27/2023	09/29/2023
3I29014-05	SS-35/0-1'	Soil	09/27/2023	09/29/2023
512501105	00 00,0 1	0011	05/2//2025	05/25/2025

Request for Analysis

Lead

PCBs

Silver

Mercury Nickel

Selenium

At the client's request, the analyses presented in the following table were performed on the samples submitted.

SS-31/0-1' (Lab Number: 3I29014-01)

Analysis	<u>Method</u>
Antimony	EPA 6010C
Arsenic	EPA 6010C
Barium	EPA 6010C
Beryllium	EPA 6010C
Cadmium	EPA 6010C
Chromium	EPA 6010C
Lead	EPA 6010C
Mercury	EPA 7471B
Nickel	EPA 6010C
PCBs	EPA 8082A
Selenium	EPA 6010C
Silver	EPA 6010C
Thallium	EPA 6010C
Vanadium	EPA 6010C
Zinc	EPA 6010C
SS-32/0-1' (Lab Number: 3I29014-02)	
Analysis	Method
Antimony	EPA 6010C
Arsenic	EPA 6010C
Barium	EPA 6010C
Beryllium	EPA 6010C
Cadmium	EPA 6010C
Chromium	EPA 6010C
Lead	EPA 6010C
Mercury	EPA 7471B
Nickel	EPA 6010C
PCBs	EPA 8082A
Selenium	EPA 6010C
Semivolatile Organic Compounds	EPA 8270D
Silver	EPA 6010C
Thallium	EPA 6010C
Vanadium	EPA 6010C
Zinc	EPA 6010C
SS-33/0-1' (Lab Number: 3I29014-03)	
Analysis	Method
Antimony	EPA 6010C
Arsenic	EPA 6010C
Barium	EPA 6010C
Beryllium	EPA 6010C
Cadmium	EPA 6010C
Chromium	EPA 6010C

EPA 6010C EPA 7471B

EPA 6010C

EPA 8082A

EPA 6010C EPA 6010C

Request for Analysis (continued)

SS-33/0-1' (Lab Number: 3I29014-03) (continued)

Analysis	Method
Thallium	EPA 6010C
Vanadium	EPA 6010C
Zinc	EPA 6010C

SS-34/0-1' (Lab Number: 3I29014-04)

Analysis	Method
Antimony	EPA 6010C
Arsenic	EPA 6010C
Barium	EPA 6010C
Beryllium	EPA 6010C
Cadmium	EPA 6010C
Chromium	EPA 6010C
Lead	EPA 6010C
Mercury	EPA 7471B
Nickel	EPA 6010C
PCBs	EPA 8082A
Selenium	EPA 6010C
Silver	EPA 6010C
Thallium	EPA 6010C
Vanadium	EPA 6010C
Zinc	EPA 6010C

SS-35/0-1' (Lab Number: 3I29014-05)

Analysis	Method
Antimony	EPA 6010C
Arsenic	EPA 6010C
Barium	EPA 6010C
Beryllium	EPA 6010C
Cadmium	EPA 6010C
Chromium	EPA 6010C
Lead	EPA 6010C
Mercury	EPA 7471B
Nickel	EPA 6010C
PCBs	EPA 8082A
Selenium	EPA 6010C
Silver	EPA 6010C
Thallium	EPA 6010C
Vanadium	EPA 6010C
Zinc	EPA 6010C

Method References

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, USEPA

Case Narrative

Sample Receipt:

The samples associated with this work order were received in appropriately cooled and preserved containers. The chain of custody was adequately completed and corresponded to the samples submitted.

Exceptions: None

Analysis:

All samples were prepared and analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control requirements and allowances. Results for all soil samples, unless otherwise indicated, are reported on a dry weight basis.

Exceptions: None

Sample: SS-31/0-1' Lab Number: 3129014-01 (Soil)

Reporting							
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed	
Antimony	7.08		1.01	mg/kg	10/02/23	10/05/23	
Arsenic	5.12		1.53	mg/kg	10/02/23	10/05/23	
Barium	38.7		0.51	mg/kg	10/02/23	10/05/23	
Beryllium	ND		0.51	mg/kg	10/02/23	10/05/23	
Cadmium	ND		0.77	mg/kg	10/02/23	10/05/23	
Chromium	9.78		0.77	mg/kg	10/02/23	10/05/23	
Lead	41.7		0.77	mg/kg	10/02/23	10/05/23	
Mercury	ND		0.185	mg/kg	10/02/23	10/02/23	
Nickel	7.68		0.77	mg/kg	10/02/23	10/05/23	
Selenium	ND		1.53	mg/kg	10/02/23	10/05/23	
Silver	ND		1.53	mg/kg	10/02/23	10/05/23	
Vanadium	31.7		0.51	mg/kg	10/02/23	10/05/23	
Zinc	54.2		3.1	mg/kg	10/02/23	10/05/23	
Thallium	ND		0.51	mg/kg	10/02/23	10/05/23	
				-			

Sample: SS-32/0-1' Lab Number: 3129014-02 (Soil)

Reporting							
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed	
Antimony	2.52		1.01	mg/kg	10/02/23	10/05/23	
Arsenic	5.46		1.53	mg/kg	10/02/23	10/05/23	
Barium	106		0.50	mg/kg	10/02/23	10/05/23	
Beryllium	ND		0.50	mg/kg	10/02/23	10/05/23	
Cadmium	1.42		0.76	mg/kg	10/02/23	10/05/23	
Chromium	42.6		0.76	mg/kg	10/02/23	10/05/23	
Lead	252		0.76	mg/kg	10/02/23	10/05/23	
Mercury	0.253		0.156	mg/kg	10/02/23	10/02/23	
Nickel	17.2		0.76	mg/kg	10/02/23	10/05/23	
Selenium	ND		1.53	mg/kg	10/02/23	10/05/23	
Silver	ND		1.53	mg/kg	10/02/23	10/05/23	
Vanadium	69.2		0.50	mg/kg	10/02/23	10/05/23	
Zinc	169		3.1	mg/kg	10/02/23	10/05/23	
Thallium	ND		0.50	mg/kg	10/02/23	10/05/23	

Sample: SS-33/0-1' Lab Number: 3129014-03 (Soil)

Reporting							
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed	
Antimony	ND		0.90	mg/kg	10/02/23	10/05/23	
Arsenic	3.72		1.37	mg/kg	10/02/23	10/05/23	
Barium	41.5		0.45	mg/kg	10/02/23	10/05/23	
Beryllium	0.49		0.45	mg/kg	10/02/23	10/05/23	
Cadmium	0.70		0.68	mg/kg	10/02/23	10/05/23	
Chromium	12.4		0.68	mg/kg	10/02/23	10/05/23	
Lead	44.0		0.68	mg/kg	10/02/23	10/05/23	
Mercury	ND		0.152	mg/kg	10/02/23	10/02/23	
Nickel	14.2		0.68	mg/kg	10/02/23	10/05/23	
Selenium	ND		1.37	mg/kg	10/02/23	10/05/23	
Silver	ND		1.37	mg/kg	10/02/23	10/05/23	
Vanadium	39.7		0.45	mg/kg	10/02/23	10/05/23	
Zinc	94.8		2.7	mg/kg	10/02/23	10/05/23	
Thallium	ND		0.45	mg/kg	10/02/23	10/05/23	

Sample: SS-34/0-1' Lab Number: 3129014-04 (Soil)

Reporting							
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed	
Antimony	ND		0.85	mg/kg	10/02/23	10/05/23	
Arsenic	3.63		1.29	mg/kg	10/02/23	10/05/23	
Barium	58.1		0.42	mg/kg	10/02/23	10/05/23	
Beryllium	0.50		0.42	mg/kg	10/02/23	10/05/23	
Cadmium	0.92		0.64	mg/kg	10/02/23	10/05/23	
Chromium	15.7		0.64	mg/kg	10/02/23	10/05/23	
Lead	69.7		0.64	mg/kg	10/02/23	10/05/23	
Mercury	ND		0.160	mg/kg	10/02/23	10/02/23	
Nickel	13.8		0.64	mg/kg	10/02/23	10/05/23	
Selenium	ND		1.29	mg/kg	10/02/23	10/05/23	
Silver	ND		1.29	mg/kg	10/02/23	10/05/23	
Vanadium	55.9		0.42	mg/kg	10/02/23	10/05/23	
Zinc	104		2.6	mg/kg	10/02/23	10/05/23	
Thallium	ND		0.42	mg/kg	10/02/23	10/05/23	

Sample: SS-35/0-1' Lab Number: 3129014-05 (Soil)

Reporting							
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed	
Antimony	ND		0.83	mg/kg	10/02/23	10/05/23	
Arsenic	3.52		1.25	mg/kg	10/02/23	10/05/23	
Barium	41.5		0.41	mg/kg	10/02/23	10/05/23	
Beryllium	0.47		0.41	mg/kg	10/02/23	10/05/23	
Cadmium	0.63		0.63	mg/kg	10/02/23	10/05/23	
Chromium	15.8		0.63	mg/kg	10/02/23	10/05/23	
Lead	46.5		0.63	mg/kg	10/02/23	10/05/23	
Mercury	ND		0.161	mg/kg	10/02/23	10/02/23	
Nickel	15.8		0.63	mg/kg	10/02/23	10/05/23	
Selenium	ND		1.25	mg/kg	10/02/23	10/05/23	
Silver	ND		1.25	mg/kg	10/02/23	10/05/23	
Vanadium	36.0		0.41	mg/kg	10/02/23	10/05/23	
Zinc	81.9		2.5	mg/kg	10/02/23	10/05/23	
Thallium	ND		0.41	mg/kg	10/02/23	10/05/23	

Results: Semivolatile organic compounds

Sample: SS-32/0-1' Lab Number: 3129014-02 (Soil)

alyte Result	Qual	Reporting Limit	Units	Date Prepared	Date Analyzed
2,4-Trichlorobenzene ND		828	ug/kg	09/30/23	10/04/23
2-Dichlorobenzene ND		828	ug/kg	09/30/23	10/04/23
B-Dichlorobenzene ND		828	ug/kg	09/30/23	10/04/23
I-Dichlorobenzene ND		828	ug/kg	09/30/23	10/04/23
enol ND		828	ug/kg	09/30/23	10/04/23
ł,5-Trichlorophenol ND		828	ug/kg	09/30/23	10/04/23
ł,6-Trichlorophenol ND		828	ug/kg	09/30/23	10/04/23
I-Dichlorophenol ND		828	ug/kg	09/30/23	10/04/23
I-Dimethylphenol ND		2100	ug/kg	09/30/23	10/04/23
I-Dinitrophenol ND		2100	ug/kg	09/30/23	10/04/23
I-Dinitrotoluene ND		828	ug/kg	09/30/23	10/04/23
5-Dinitrotoluene ND		828	ug/kg	09/30/23	10/04/23
Chloronaphthalene ND		828	ug/kg	09/30/23	10/04/23
Chlorophenol ND		828	ug/kg	09/30/23	10/04/23
Methylnaphthalene ND		828	ug/kg	09/30/23	10/04/23
robenzene ND		828	ug/kg	09/30/23	10/04/23
Methylphenol ND		828	ug/kg	09/30/23	10/04/23
Vitroaniline ND		828	ug/kg	09/30/23	10/04/23
Nitrophenol ND		2100	ug/kg	09/30/23	10/04/23
S'-Dichlorobenzidine ND		2100	ug/kg	09/30/23	10/04/23
Vitroaniline ND		828	ug/kg	09/30/23	10/04/23
5-Dinitro-2-methylphenol ND		2100	ug/kg	09/30/23	10/04/23
Bromophenyl phenyl ether ND		828	ug/kg	09/30/23	10/04/23
Chloro-3-methylphenol ND		828	ug/kg	09/30/23	10/04/23
Chloroaniline ND		828	ug/kg	09/30/23	10/04/23
Chlorophenyl phenyl ether ND		828	ug/kg	09/30/23	10/04/23
Vitroaniline ND		828	ug/kg	09/30/23	10/04/23
Vitrophenol ND		2100	ug/kg ug/kg	09/30/23	10/04/23
enaphthene 1420		828	ug/kg ug/kg	09/30/23	10/04/23
enaphthylene 912		828	ug/kg ug/kg	09/30/23	10/04/23
iline ND		828	ug/kg ug/kg	09/30/23	10/04/23
ithracene 4590		828	ug/kg	09/30/23	10/04/23
enzo(a)anthracene 12500		828	ug/kg ug/kg	09/30/23	10/04/23
enzo(a)pyrene 12500		828	ug/kg	09/30/23	10/04/23
enzo(b)fluoranthene 16400		828	ug/kg ug/kg	09/30/23	10/04/23
enzo(g,h,i)perylene 9340		828		09/30/23	10/04/23
enzo(k)fluoranthene 5990		828	ug/kg ug/kg	09/30/23	10/04/23
nzoic acid ND		6370		09/30/23	10/04/23
		191	ug/kg		
			ug/kg	09/30/23	10/04/23
(2-chloroethoxy)methane ND		828 828	ug/kg	09/30/23	10/04/23
(2-chloroethyl)ether ND		828	ug/kg	09/30/23	10/04/23
(2-chloroisopropyl)ether ND		828	ug/kg	09/30/23	10/04/23
(2-ethylhexyl)phthalate ND		2550	ug/kg	09/30/23	10/04/23
tyl benzyl phthalate ND		828	ug/kg	09/30/23	10/04/23
irysene 13800		828	ug/kg	09/30/23	10/04/23
n-octyl phthalate ND		1270	ug/kg	09/30/23	10/04/23
benz(a,h)anthracene 2420		828	ug/kg	09/30/23	10/04/23
benzofuran 1340		828	ug/kg	09/30/23	10/04 Pa

Results: Semivolatile organic compounds (Continued)

Sample: SS-32/0-1' (Continued) Lab Number: 3I29014-02 (Soil)

		Reporting			
Analyte	Result	Qual Limit	Units	Date Prepared	Date Analyzed
Diethyl phthalate	ND	828	ug/kg	09/30/23	10/04/23
Dimethyl phthalate	ND	2100	ug/kg	09/30/23	10/04/23
Di-n-butyl phthalate	ND	1270	ug/kg	09/30/23	10/04/23
Fluoranthene	25200	828	ug/kg	09/30/23	10/04/23
Fluorene	2030	828	ug/kg	09/30/23	10/04/23
Hexachlorobenzene	ND	828	ug/kg	09/30/23	10/04/23
Hexachlorobutadiene	ND	828	ug/kg	09/30/23	10/04/23
Hexachlorocyclopentadiene	ND	2100	ug/kg	09/30/23	10/04/23
Hexachloroethane	ND	828	ug/kg	09/30/23	10/04/23
Indeno(1,2,3-cd)pyrene	9040	828	ug/kg	09/30/23	10/04/23
Isophorone	ND	828	ug/kg	09/30/23	10/04/23
Naphthalene	1150	828	ug/kg	09/30/23	10/04/23
N-Nitrosodimethylamine	ND	828	ug/kg	09/30/23	10/04/23
N-Nitrosodi-n-propylamine	ND	828	ug/kg	09/30/23	10/04/23
N-Nitrosodiphenylamine	ND	828	ug/kg	09/30/23	10/04/23
Pentachlorophenol	ND	2100	ug/kg	09/30/23	10/04/23
Phenanthrene	22000	828	ug/kg	09/30/23	10/04/23
Pyrene	25600	828	ug/kg	09/30/23	10/04/23
m&p-Cresol	ND	1660	ug/kg	09/30/23	10/04/23
Pyridine	ND	828	ug/kg	09/30/23	10/04/23
Azobenzene	ND	828	ug/kg	09/30/23	10/04/23
Total Dichlorobenzene	ND	828	ug/kg	09/30/23	10/04/23

Surrogate(s)	Recovery%	Limits		
Nitrobenzene-d5	76.5%	30-126	09/30/23	10/04/23
p-Terphenyl-d14	99.7%	40-130	09/30/23	10/04/23
2-Fluorobiphenyl	81.2%	34-130	09/30/23	10/04/23
Phenol-d6	62.4%	30-130	09/30/23	10/04/23
2,4,6-Tribromophenol	91.6%	30-135	09/30/23	10/04/23
2-Fluorophenol	60.5%	30-130	09/30/23	10/04/23

Sample: SS-31/0-1' Lab Number: 3129014-01 (Soil)

Reporting									
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed			
Aroclor-1016	ND		86	ug/kg	09/30/23	10/03/23			
Aroclor-1221	ND		86	ug/kg	09/30/23	10/03/23			
Aroclor-1232	ND		86	ug/kg	09/30/23	10/03/23			
Aroclor-1242	ND		86	ug/kg	09/30/23	10/03/23			
Aroclor-1248	ND		86	ug/kg	09/30/23	10/03/23			
Aroclor-1254	ND		86	ug/kg	09/30/23	10/03/23			
Aroclor-1260	ND		86	ug/kg	09/30/23	10/03/23			
Aroclor-1262	ND		86	ug/kg	09/30/23	10/03/23			
Aroclor-1268	ND		86	ug/kg	09/30/23	10/03/23			
PCBs (Total)	ND		86	ug/kg	09/30/23	10/03/23			
Surrogate(s)	Recovery%		Limits						
2,4,5,6-Tetrachloro-m-xylene (TCMX)	77.2%		36.2-130		09/30/23	10/03/23			
Decachlorobiphenyl (DCBP)	92.1%		43.3-130		09/30/23	10/03/23			

Sample: SS-32/0-1' Lab Number: 3I29014-02 (Soil)

Reporting									
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed			
Aroclor-1016	ND		82	ug/kg	09/30/23	10/03/23			
Aroclor-1221	ND		82	ug/kg	09/30/23	10/03/23			
Aroclor-1232	ND		82	ug/kg	09/30/23	10/03/23			
Aroclor-1242	ND		82	ug/kg	09/30/23	10/03/23			
Aroclor-1248	ND		82	ug/kg	09/30/23	10/03/23			
Aroclor-1254	ND		82	ug/kg	09/30/23	10/03/23			
Aroclor-1260	ND		82	ug/kg	09/30/23	10/03/23			
Aroclor-1262	ND		82	ug/kg	09/30/23	10/03/23			
Aroclor-1268	ND		82	ug/kg	09/30/23	10/03/23			
PCBs (Total)	ND		82	ug/kg	09/30/23	10/03/23			
Surrogate(s)	Recovery%		Limits						
2,4,5,6-Tetrachloro-m-xylene (TCMX)	49.7%		36.2-130		09/30/23	10/03/23			
Decachlorobiphenyl (DCBP)	61.1%		43.3-130		<i>43.3-130</i> 09/30		09/30/23	10/03/23	

Sample: SS-33/0-1' Lab Number: 3129014-03 (Soil)

			Reporting				
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed	
Aroclor-1016	ND		79	ug/kg	09/30/23	10/03/23	
Aroclor-1221	ND		79	ug/kg	09/30/23	10/03/23	
Aroclor-1232	ND		79	ug/kg	09/30/23	10/03/23	
Aroclor-1242	ND		79	ug/kg	09/30/23	10/03/23	
Aroclor-1248	ND		79	ug/kg	09/30/23	10/03/23	
Aroclor-1254	ND		79	ug/kg	09/30/23	10/03/23	
Aroclor-1260	ND		79	ug/kg	09/30/23	10/03/23	
Aroclor-1262	ND		79	ug/kg	09/30/23	10/03/23	
Aroclor-1268	ND		79	ug/kg	09/30/23	10/03/23	
PCBs (Total)	ND		79	ug/kg	09/30/23	10/03/23	
Surrogate(s)	Recovery%		Limits				
2,4,5,6-Tetrachloro-m-xylene (TCMX)	84.4%		36.2-130		09/30/23	10/03/23	
Decachlorobiphenyl (DCBP)	58.1%		43.3-130		<i>43.3-130</i> 09/30/23		10/03/23

Sample: SS-34/0-1' Lab Number: 3129014-04 (Soil)

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Aroclor-1016	ND		77	ug/kg	09/30/23	10/03/23
Aroclor-1221	ND		77	ug/kg	09/30/23	10/03/23
Aroclor-1232	ND		77	ug/kg	09/30/23	10/03/23
Aroclor-1242	ND		77	ug/kg	09/30/23	10/03/23
Aroclor-1248	ND		77	ug/kg	09/30/23	10/03/23
Aroclor-1254	ND		77	ug/kg	09/30/23	10/03/23
Aroclor-1260	ND		77	ug/kg	09/30/23	10/03/23
Aroclor-1262	ND		77	ug/kg	09/30/23	10/03/23
Aroclor-1268	ND		77	ug/kg	09/30/23	10/03/23
PCBs (Total)	ND		77 ug/kg		09/30/23	10/03/23
Surrogate(s)	Recovery%		Limits			
2,4,5,6-Tetrachloro-m-xylene (TCMX)	64.6%		36.2-130		09/30/23	10/03/23
Decachlorobiphenyl (DCBP)	56.0%		43.3-130		09/30/23	10/03/23

Sample: SS-35/0-1' Lab Number: 3129014-05 (Soil)

			Reporting				
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed	
Aroclor-1016	ND		78	ug/kg	09/30/23	10/03/23	
Aroclor-1221	ND		78	ug/kg	09/30/23	10/03/23	
Aroclor-1232	ND		78	ug/kg	09/30/23	10/03/23	
Aroclor-1242	ND		78	ug/kg	09/30/23	10/03/23	
Aroclor-1248	ND		78	ug/kg	09/30/23	10/03/23	
Aroclor-1254	ND		78	ug/kg	09/30/23	10/03/23	
Aroclor-1260	ND		78	ug/kg	09/30/23	10/03/23	
Aroclor-1262	ND		78	ug/kg	09/30/23	10/03/23	
Aroclor-1268	ND		78	ug/kg	09/30/23	10/03/23	
PCBs (Total)	ND		78	ug/kg	09/30/23	10/03/23	
Surrogate(s)	Recovery%		Limits				
2,4,5,6-Tetrachloro-m-xylene (TCMX)	61.6%		36.2-130		09/30/23	10/03/23	
Decachlorobiphenyl (DCBP)	55.1%		43.3-130		09/30/23	10/03/23	

Quality Control

Total Metals

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: B3J0019 - Metals Digest	ion Soils									
Blank (B3J0019-BLK1)					Prepared 8	Analyzed: 1	0/02/23			
Selenium	ND		1.00	mg/kg						
Cadmium	ND		0.50	mg/kg						
Arsenic	ND		1.00	mg/kg						
Nickel	ND		0.50	mg/kg						
Beryllium	ND		0.33	mg/kg						
Chromium	ND		0.50	mg/kg						
Antimony	ND		0.66	mg/kg						
Lead	ND		0.50	mg/kg						
Vanadium	ND		0.33	mg/kg						
Barium	ND		0.33	mg/kg						
Zinc	ND		2.0	mg/kg						
Silver	ND		1.00	mg/kg						
Thallium	ND		0.33	mg/kg						
LCS (B3J0019-BS1)				Pi	repared: 10/0	2/23 Analyze	ed: 10/05/23			
Barium	115		0.33	mg/kg	100		115	85-115		
Cadmium	105		0.50	mg/kg	100		105	85-115		
Beryllium	22.2		0.33	mg/kg	20.0		111	85-115		
Chromium	104		0.50	mg/kg	100		104	85-115		
Lead	101		0.50	mg/kg	100		101	85-115		
Antimony	107		0.66	mg/kg	100		107	85-115		
Selenium	21.6		1.00	mg/kg	20.0		108	85-115		
Vanadium	107		0.33	mg/kg	100		107	85-115		
Zinc	110		2.0	mg/kg	100		110	85-115		
Nickel	102		0.50	mg/kg	100		102	85-112		
Arsenic	20.5		1.00	mg/kg	20.0		103	85-115		
Silver	44.3		1.00	mg/kg	40.0		111	85-115		
Thallium	100		0.33	mg/kg	100		100	85-115		

Quality Control (Continued) **Total Metals (Continued)** %REC RPD Reporting Spike Source Limit Qual Units Limits RPD Limit Analyte Result Level Result %REC Batch: B3J0052 - Metals Cold-Vapor Mercury Blank (B3J0052-BLK1) Prepared & Analyzed: 10/02/23 Mercury ND 0.100 mg/kg LCS (B3J0052-BS1) Prepared & Analyzed: 10/02/23 0.100 mg/kg 0.357 Mercury 0.360 101 93-114 LCS Dup (B3J0052-BSD1) Prepared & Analyzed: 10/02/23 mg/kg Mercury 0.365 0.100 0.357 102 93-114 1.44 200 Prepared & Analyzed: 10/02/23 Matrix Spike (B3J0052-MS1) Source: 3I29003-01 0.741 mg/kg dry 0.658 0.133 80-120 Mercury 0.184 92.5 Matrix Spike (B3J0052-MS2) Source: 3I29030-01 Prepared & Analyzed: 10/02/23 Mercury 0.650 0.173 mg/kg dry 0.618 0.126 84.8 80-120 Source: 3I29003-01 Prepared & Analyzed: 10/02/23 Matrix Spike Dup (B3J0052-MSD1) 0.684 mg/kg dry 0.588 20 Mercury 0.165 0.133 93.6 80-120 8.11

Semivolatile organic compounds

Analyte	Result Ç	Reportin Jual Limit	g Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B3I1316 - 1_Semivola	tiles Extractions								
Blank (B3I1316-BLK1)				Prepared: 09/3	30/23 Analyze	d: 10/02/23			
1,2,4-Trichlorobenzene	ND	129	ug/kg						
1,2-Dichlorobenzene	ND	129	ug/kg						
1,3-Dichlorobenzene	ND	129	ug/kg						
1,4-Dichlorobenzene	ND	129	ug/kg						
Phenol	ND	129	ug/kg						
2,4,5-Trichlorophenol	ND	129	ug/kg						
2,4,6-Trichlorophenol	ND	129	ug/kg						
2,4-Dichlorophenol	ND	129	ug/kg						
2,4-Dimethylphenol	ND	328	ug/kg						
2,4-Dinitrophenol	ND	328	ug/kg						
2,4-Dinitrotoluene	ND	129	ug/kg						
2,6-Dinitrotoluene	ND	129	ug/kg						
2-Chloronaphthalene	ND	129	ug/kg						
2-Chlorophenol	ND	129	ug/kg						
2-Methylnaphthalene	ND	129	ug/kg						
Nitrobenzene	ND	129	ug/kg						
2-Methylphenol	ND	129	ug/kg						
2-Nitroaniline	ND	129	ug/kg						
2-Nitrophenol	ND	328	ug/kg						
3,3'-Dichlorobenzidine	ND	328	ug/kg						
3-Nitroaniline	ND	129	ug/kg						
4,6-Dinitro-2-methylphenol	ND	328	ug/kg						
4-Bromophenyl phenyl ether	ND	129	ug/kg						
4-Chloro-3-methylphenol	ND	129	ug/kg						
4-Chloroaniline	ND	129	ug/kg						
4-Chlorophenyl phenyl ether	ND	129	ug/kg						
4-Nitroaniline	ND	129	ug/kg						
4-Nitrophenol	ND	328	ug/kg						
Acenaphthene	ND	129	ug/kg						
Acenaphthylene	ND	129	ug/kg						
Aniline	ND	129	ug/kg						
Anthracene	ND	129	ug/kg						
Benzo(a)anthracene	ND	129	ug/kg						
Benzo(a)pyrene	ND	129	ug/kg						
Benzo(b)fluoranthene	ND	129	ug/kg						
Benzo(g,h,i)perylene	ND	129	ug/kg						
Benzo(k)fluoranthene	ND	129	ug/kg						
Benzoic acid	ND	993	ug/kg						
Biphenyl	ND	30	ug/kg						
Bis(2-chloroethoxy)methane	ND	129	ug/kg						
Bis(2-chloroethyl)ether	ND	129	ug/kg						
Bis(2-chloroisopropyl)ether	ND	129	ug/kg						
Bis(2-ethylhexyl)phthalate	ND	397	ug/kg						
Butyl benzyl phthalate	ND	129	ug/kg						
Chrysene	ND	129	ug/kg						
Di-n-octyl phthalate	ND	199	ug/kg						
Dibenz(a,h)anthracene	ND	129	ug/kg						
Dibenzofuran	ND	129	ug/kg						
Diethyl phthalate	ND	129	ug/kg						
Dimethyl phthalate	ND	328	ug/kg						
Di-n-butyl phthalate	ND	199	ug/kg						
Fluoranthene	ND	129	ug/kg						
Fluorene	ND	129	ug/kg						
Hexachlorobenzene	ND	129	ug/kg						
Hexachlorobutadiene	ND	129	ug/kg						
Hexachlorocyclopentadiene	ND	328	ug/kg						
Hexachloroethane	ND	129	ug/kg					Page	

Analyte	Result 0	Reporting Qual Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B3I1316 - 1_Semivola	tiles Extractions	(Continued)							
Blank (B3I1316-BLK1)			Pi	repared: 09/3	0/23 Analyze	ed: 10/02/23			
Indeno(1,2,3-cd)pyrene	ND	129	ug/kg		,	-, -=, =9			
Isophorone	ND	129	ug/kg						
Naphthalene	ND	129	ug/kg						
N-Nitrosodimethylamine	ND	129	ug/kg						
N-Nitrosodi-n-propylamine	ND	129	ug/kg						
N-Nitrosodiphenylamine	ND	129	ug/kg						
Pentachlorophenol	ND	328	ug/kg						
Phenanthrene	ND	129	ug/kg						
Pyrene	ND	129	ug/kg						
m&p-Cresol	ND	258	ug/kg						
Pyridine	ND	129	ug/kg						
Azobenzene	ND	129	ug/kg						
Total Dichlorobenzene	ND	129	ug/kg						
						· · · · · · · · · · · · · · · · · · ·			
Surrogate: Nitrobenzene-d5		1350	ug/kg	3310		40.7	30-126		
Surrogate: p-Terphenyl-d14		1510	ug/kg	3310		45.7	40-130		
Surrogate: 2-Fluorobiphenyl		1260	ug/kg	3310		<i>38.2</i>	34-130		
Surrogate: Phenol-d6		1200	ug/kg	3310		36.3	30-130		
Surrogate: 2,4,6-Tribromophenol		1230	ug/kg	3310		37.1	30-135		
Surrogate: 2-Fluorophenol		1220	ug/kg	3310		36.8	30-130		
LCS (B3I1316-BS1)			Pi	repared: 09/3	0/23 Analyze	ed: 10/02/23			
1,2,4-Trichlorobenzene	1510	129	ug/kg	3310		45.7	40-130		
1,2-Dichlorobenzene	1470	129	ug/kg	3310		44.4	40-130		
1,3-Dichlorobenzene	1410	129	ug/kg	3310		42.6	40-130		
1,4-Dichlorobenzene	1360	129	ug/kg	3310		40.9	40-130		
Phenol	1470	129	ug/kg	3310		44.5	40-130		
2,4,5-Trichlorophenol	1680	129	ug/kg	3310		50.8	40-130		
2,4,6-Trichlorophenol	1680	129	ug/kg	3310		50.8	40-130		
2,4-Dichlorophenol	1670	129	ug/kg	3310		50.5	40-130		
2,4-Dimethylphenol	1560	328	ug/kg	3310		47.1	40-130		
2,4-Dinitrophenol	1530	328	ug/kg	3310		46.3	15-140		
2,4-Dinitrotoluene	1830	129	ug/kg	3310		55.2	40-130		
2,6-Dinitrotoluene	1800	129	ug/kg	3310		54.4	40-130		
2-Chloronaphthalene	1530	129	ug/kg	3310		46.1	40-130		
2-Chlorophenol	1490	129	ug/kg	3310		45.1	40-130		
2-Methylnaphthalene	1580	129	ug/kg	3310		47.7	40-130		
Nitrobenzene	1570	129	ug/kg	3310		47.4	40-130		
2-Methylphenol	1600	129	ug/kg	3310		48.3	40-130		
2-Nitroaniline	1890	129	ug/kg	3310		57.0	40-130		
2-Nitrophenol	1820	328	ug/kg	3310		54.9	40-130		
3-Nitroaniline	1920	129	ug/kg	3310		57.9	40-130		
4,6-Dinitro-2-methylphenol	1820	328	ug/kg	3310		54.9	30-130		
4-Bromophenyl phenyl ether	1810	129	ug/kg	3310		54.7	40-130		
4-Chloro-3-methylphenol	1690	129	ug/kg	3310		50.9	40-130		
4-Chlorophenyl phenyl ether	1800	129	ug/kg	3310		54.3	40-130		
4-Nitroaniline	1800	129	ug/kg	3310		54.5	40-130		
4-Nitrophenol	2050	328	ug/kg	3310		62.0	40-130		
Acenaphthene	1580	129	ug/kg	3310		47.7	40-130		
Acenaphthylene	1650	129	ug/kg	3310		49.7	40-130		
Anthracene	1890	129	ug/kg	3310		57.1	40-130		
Benzo(a)anthracene	1840	129	ug/kg	3310		55.5	40-130		
Benzo(a)pyrene	1910	129	ug/kg	3310		57.8	40-130		
Benzo(b)fluoranthene	1970	129	ug/kg	3310		59.4	40-130		
Benzo(g,h,i)perylene	1970	129	ug/kg	3310		59.5	40-130		
Benzo(k)fluoranthene	2010	129	ug/kg	3310		60.8	40-130		
Biphenyl	420	30	ug/kg	828		50.7	40-130		
Dipricity	-120	50	~9/···9	020		50.7	10-100		

Quality Control

(Continued)

Semivolatile organic compounds (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: B3I1316 - 1_Semivola	tiles Extractio	ns (Con	tinued)							
LCS (B3I1316-BS1)		-	2	Pr	epared: 09/3	80/23 Analyze	ed: 10/02/23			
Bis(2-chloroethyl)ether	1580		129	ug/kg	3310		47.7	40-130		
Bis(2-chloroisopropyl)ether	1610		129	ug/kg	3310		48.7	40-130		
Bis(2-ethylhexyl)phthalate	2110		397	ug/kg	3310		63.8	40-130		
Butyl benzyl phthalate	2040		129	ug/kg	3310		61.7	40-130		
Chrysene	1920		129	ug/kg	3310		58.0	40-130		
Di-n-octyl phthalate	1920		199	ug/kg	3310		58.1	40-130		
Dibenz(a,h)anthracene	2010		129	ug/kg	3310		60.8	40-130		
Dibenzofuran	1700		129	ug/kg	3310		51.5	40-130		
Diethyl phthalate	1770		129	ug/kg	3310		53.6	40-130		
Dimethyl phthalate	1700		328	ug/kg	3310		51.3	40-130		
Di-n-butyl phthalate	2060		199	ug/kg	3310		62.3	40-130		
Fluoranthene	1990		129	ug/kg	3310		60.2	40-130		
Fluorene	1770		129	ug/kg	3310		53.3	40-130		
Hexachlorobenzene	1750		129	ug/kg	3310		52.7	40-130		
Hexachlorobutadiene	1670		129	ug/kg	3310		50.3	40-130		
Hexachlorocyclopentadiene	1650		328	ug/kg	3310		49.8	40-130		
Hexachloroethane	1460		129	ug/kg	3310		44.0	40-130		
Indeno(1,2,3-cd)pyrene	1900		129	ug/kg	3310		57.5	40-130		
Isophorone	1650		129	ug/kg	3310		49.9	40-130		
Naphthalene	1630		129	ug/kg	3310		49.1	40-130		
N-Nitrosodimethylamine	1340		129	ug/kg	3310		40.6	40-130		
N-Nitrosodi-n-propylamine	1580		129	ug/kg	3310		47.8	40-130		
N-Nitrosodiphenylamine	2180		129	ug/kg	3310		66.0	40-130		
Pentachlorophenol	1930		328	ug/kg	3310		58.1	15-140		
Phenanthrene	1880		129	ug/kg	3310		56.8	40-130		
Pyrene	1840		129	ug/kg	3310		55.6	40-130		
m&p-Cresol	1610		258	ug/kg	3310		48.6	40-130		
Surrogate: Nitrobenzene-d5			1760	ug/kg	3310		53.0	30-126		
Surrogate: p-Terphenyl-d14			2060	ug/kg	3310		62.3	40-130		
Surrogate: 2-Fluorobiphenyl			1700	ug/kg	3310		51.3	34-130		
Surrogate: Phenol-d6			1660	ug/kg	3310		50.2	30-130		
Surrogate: 2,4,6-Tribromophenol			2260	ug/kg	3310		68.3	30-135		
Surrogate: 2-Fluorophenol			1630	ug/kg	3310		49.1	30-130		

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPE Limi
atch: B3I1316 - 1_Semivol	atiles Extractio	ns (Coi	ntinued)							
LCS Dup (B3I1316-BSD1)				Pr	epared: 09/3	0/23 Analyze	ed: 10/02/23			
1,2,4-Trichlorobenzene	1750		129	ug/kg	3310	0,20 ,,20	52.8	40-130	14.4	30
1,2-Dichlorobenzene	1650		129	ug/kg	3310		49.7	40-130	11.2	30
1,3-Dichlorobenzene	1590		129	ug/kg	3310		48.1	40-130	12.1	30
1,4-Dichlorobenzene	1550		129	ug/kg	3310		47.0	40-130	13.7	30
Phenol	1620		129	ug/kg	3310		48.8	40-130	9.13	30
2,4,5-Trichlorophenol	1840		129	ug/kg	3310		55.7	40-130	9.16	30
2,4,6-Trichlorophenol	1870		129	ug/kg	3310		56.5	40-130	10.6	30
2,4-Dichlorophenol	1860		129	ug/kg	3310		56.3	40-130	10.7	30
2,4-Dimethylphenol	1700		328	ug/kg	3310		51.3	40-130	8.49	30
2,4-Dinitrophenol	842		328	ug/kg	3310		25.4	15-140	58.3	30
2,4-Dinitrotoluene	1910		129	ug/kg	3310		57.6	40-130	4.32	30
2,6-Dinitrotoluene	1940		129	ug/kg	3310		58.7	40-130	7.64	30
2-Chloronaphthalene	1710		129	ug/kg	3310		51.6	40-130	11.3	30
2-Chlorophenol	1710		129	ug/kg	3310		51.7	40-130	13.6	30
2-Methylnaphthalene	1800		129	ug/kg	3310		54.4	40-130	13.2	30
Nitrobenzene	1770		129	ug/kg	3310		53.5	40-130	12.1	30
2-Methylphenol	1750		129	ug/kg	3310		52.8	40-130	8.90	30
2-Nitroaniline	2010		129	ug/kg	3310		60.8	40-130	6.45	3
2-Nitrophenol	2170		328	ug/kg	3310		65.6	40-130	17.7	3
3-Nitroaniline	2050		129	ug/kg	3310		62.1	40-130	6.94	30
4,6-Dinitro-2-methylphenol	1560		328	ug/kg	3310		47.0	30-130	15.4	30
4-Bromophenyl phenyl ether	1960		129	ug/kg	3310		59.3	40-130	8.08	30
4-Chloro-3-methylphenol	1880		129	ug/kg	3310		56.9	40-130	11.1	30
4-Chlorophenyl phenyl ether	1890		129	ug/kg	3310		57.2	40-130	5.24	30
4-Nitroaniline	1900		129	ug/kg	3310		57.3	40-130	5.08	30
4-Nitrophenol	2080		328	ug/kg	3310		62.8	40-130	1.38	3
Acenaphthene	1800		129	ug/kg	3310		54.4	40-130	13.2	3
Acenaphthylene	1800		129	ug/kg	3310		54.5	40-130	9.17	30
Anthracene	2010		129	ug/kg	3310		60.6	40-130	6.05	30
Benzo(a)anthracene	1900		129	ug/kg	3310		57.3	40-130	3.19	30
Benzo(a)pyrene	2010		129	ug/kg	3310		60.6	40-130	4.80	30
Benzo(b)fluoranthene	2000		129	ug/kg	3310		60.5	40-130	1.80	30
Benzo(g,h,i)perylene	2020		129	ug/kg	3310		61.1	40-130	2.65	30
Benzo(k)fluoranthene	2070		129	ug/kg	3310		62.4	40-130	2.50	30
Biphenyl	470		30	ug/kg	828		56.7	40-130	11.2	30
Bis(2-chloroethoxy)methane	1920		129	ug/kg	3310		57.8	40-130	12.3	30
Bis(2-chloroethyl)ether	1760		129	ug/kg	3310		53.3	40-130	11.0	30
Bis(2-chloroisopropyl)ether	1800		129	ug/kg	3310		54.4	40-130	11.1	30
Bis(2-ethylhexyl)phthalate	2200		397	ug/kg	3310		66.5	40-130	4.15	30
Butyl benzyl phthalate	2120		129	ug/kg	3310		64.1	40-130	3.79	30
Chrysene	1950		129	ug/kg	3310		58.9	40-130	1.54	30
Di-n-octyl phthalate	1990		199	ug/kg	3310		60.2	40-130	3.58	30
Dibenz(a,h)anthracene	2020		129	ug/kg	3310		60.9	40-130	0.164	30
Dibenzofuran	1840		129	ug/kg	3310		55.5	40-130	7.59	3
Diethyl phthalate	1860		129	ug/kg	3310		56.1	40-130	4.63	3
Dimethyl phthalate	1800		328	ug/kg	3310		54.4	40-130	5.71	3
Di-n-butyl phthalate	2180		199	ug/kg	3310		65.9	40-130	5.61	3
Fluoranthene	2070		129	ug/kg	3310		62.5	40-130	3.78	3
Fluorene	1880		129	ug/kg	3310		56.8	40-130	6.32	30
Hexachlorobenzene	1860		129	ug/kg	3310		56.3	40-130	6.53	3
Hexachlorobutadiene	1920		129	ug/kg	3310		57.8	40-130	13.9	3
Hexachlorocyclopentadiene	1920		328	ug/kg	3310		56.9	40-130	13.5	3
Hexachloroethane	1640		129	ug/kg	3310		49.6	40-130	12.0	3
Indeno(1,2,3-cd)pyrene	1940		129	ug/kg	3310		58.6	40-130	12.0	31
Isophorone	1940		129	ug/kg	3310		55.9	40-130	1.85	3(
Naphthalene	1830		129	ug/kg ug/kg	3310		55.6	40-130 40-130	11.4	31
N-Nitrosodimethylamine	1530		129	ug/kg ug/kg	2210		0.66	10-120	12.3	2

Semivolatile organic compounds (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: B3I1316 - 1_Semivola	tiles Extractio	ns (Con	tinued)							
LCS Dup (B3I1316-BSD1)		-	-	Pr	epared: 09/3	0/23 Analyze	d: 10/02/23			
N-Nitrosodi-n-propylamine	1810		129	ug/kg	3310		54.7	40-130	13.4	30
N-Nitrosodiphenylamine	2350		129	ug/kg	3310		71.1	40-130	7.44	30
Pentachlorophenol	1640		328	ug/kg	3310		49.4	15-140	16.3	30
Phenanthrene	1950		129	ug/kg	3310		59.0	40-130	3.83	30
Pyrene	1920		129	ug/kg	3310		57.9	40-130	3.95	30
m&p-Cresol	1800		258	ug/kg	3310		54.3	40-130	11.1	30
Surrogate: Nitrobenzene-d5			2000	ug/kg	3310		60.5	30-126		
Surrogate: p-Terphenyl-d14			2190	ug/kg	3310		66.2	40-130		
Surrogate: 2-Fluorobiphenyl			1910	ug/kg	3310		57.7	34-130		
Surrogate: Phenol-d6			1830	ug/kg	3310		55.2	30-130		
Surrogate: 2,4,6-Tribromophenol			2400	ug/kg	3310		72.5	30-135		
Surrogate: 2-Fluorophenol			1800	ug/kg	3310		54.5	30-130		

Quality Control

(Continued)

Polychlorinated Biphenyls (PCBs)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B3I1318 - 1_Semivolatile	es Extractio	ns								
Blank (B3I1318-BLK1)		-		Pi	epared: 09/3	0/23 Analyze	d: 10/03/23			
Aroclor-1016	ND		66	ug/kg						
Aroclor-1221	ND		66	ug/kg						
Aroclor-1232	ND		66	ug/kg						
Aroclor-1242	ND		66	ug/kg						
Aroclor-1248	ND		66	ug/kg						
Aroclor-1254	ND		66	ug/kg						
Aroclor-1260	ND		66	ug/kg						
Aroclor-1262	ND		66	ug/kg						
Aroclor-1268	ND		66	ug/kg						
PCBs (Total)	ND		66	ug/kg						
Surrogate: 2,4,5,6-Tetrachloro-m-xylene (TCMX)			10.7	ug/kg	13.3		80.3	36.2-130		
Surrogate: Decachlorobiphenyl (DCBP)			13.2	ug/kg	13.3		98.7	43.3-130		
LCS (B3I1318-BS1)				Pi	epared: 09/3	0/23 Analyze	d: 10/03/23			
Aroclor-1016	146		66	ug/kg	167		87.4	58.2-125		
Aroclor-1260	144		66	ug/kg	167		86.2	65.5-130		
Surrogate: 2,4,5,6-Tetrachloro-m-xylene (TCMX)			10.6	ug/kg	13.3		79.3	36.2-130		
Surrogate: Decachlorobiphenyl (DCBP)			12.4	ug/kg	13.3		93.1	43.3-130		
LCS Dup (B3I1318-BSD1)				Pi	repared: 09/3	0/23 Analyze	d: 10/03/23			
Aroclor-1016	147		66	ug/kg	167		88.3	58.2-125	1.08	20
Aroclor-1260	153		66	ug/kg	167		91.7	65.5-130	6.14	20
Surrogate: 2,4,5,6-Tetrachloro-m-xylene (TCMX)			11.6	ug/kg	13.3		86.9	36.2-130		
Surrogate: Decachlorobiphenyl (DCBP)			12.9	ug/kg	13.3		96.9	43.3-130		

Item	Definition
Wet	Sample results reported on a wet weight basis.
ND	Analyte NOT DETECTED at or above the reporting limit.

NEW ENGLAND TESTING LABORATORY, INC.

59 Greenhill Street West Warwick, RI 02893 1-888-863-8522

CHAIN OF CUSTODY RECORD

PROJ. NO. PROJECT NAME/LOCATION		2014			
1843 16 BARNES ROAD SAlem, MA			P		Ja row R
1843 16 BARNES ROAD, SAlem, MA CLIENT BLACKSTONE ENVIRONMENTAL SoluTIONS, LLC &	C	O NO.	ESER >	TESTS	4 mer 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	SO	T OF	A	1.	YI/U/
INVOICE TO: MICHAEL BRICHER	Ĺ	E R CONTAINERS	iv	19	REMARKS
DATE TIME O R M A P B			È	E.	55
9/27-1312:50 X SS-31 (0-1"	X	1	-	XX	ζ
1 1:10 X SS-32 0-1'	Y	1	-	XX	X
1:30 Y 55-33 0-1'	X	١	-	XY	k line line line line line line line line
1:55 X SS-34/0-1'	×)	-	XX	
V 2:15 X 55-35/0-1'	+	N	1	44	L
		- N.			
		_	_		
Sampled by: (Signature) Muchan Builton Plant Pl		Date/Time	Tem	pratory Re p. received led □	emarks: <u>5</u> d: <u>5</u> <u>List Specific Detection</u> <u>Limit Requirements:</u> MCP RC S-1 <u>Soil</u> STANDARSS
Relinquished by: (Signature)	U	10 IO	30		
Gr 1/29/159 12TR		4/24 15	50		Turnaround (Business Days)

**Net subcontracts the following tests: Radiologicals, Radon, Asbestos, UCMRs, Perchlorate, Bromate, Bromide, Sieve, Salmonella, Carbamates, CT ETPH

MassDEP Analytical Protocol Certification Form										
Labo	oratory Na	ame: New England	d Testing Laboratory	, Inc.	Project #: 1843					
Proje	Project Location: Salem, MA RTN:									
	This Form provides certifications for the following data set: list Laboratory Sample ID Number(s): 3I29014									
Matrie	Matrices: Groundwater/Surface Water Soil/Sediment Drinking Water Air Other:									
CAM	CAM Protocol (check all that apply below):									
	8260 VOC CAM II A □7470/7471 Hg CAM III B ⊠MassDEP VPH (GC/PID/FID) CAM IV A □8082 PCB CAM V A ⊠9014 Total Cyanide/PAC CAM VI A □6860 Perchlo CAM VII B									
	SVOC Ⅱ B ⊠	7010 Metals CAM III C □	MassDEP VPH (GC/MS) CAM IV C □	8081 Pesticides CAM V B □	7196 Hex Cr CAM VI B □	MassDEP APH CAM IX A □				
	Metals Ⅲ A 区	6020 Metals CAM III D □ □	MassDEP EPH CAM IV B □	8151 Herbicides CAM V C □	8330 Explosives CAM VIII A □	TO-15 VOC CAM IX B □				
	Affirmativ	ve Responses to	Questions A throug	gh F are required f	for "Presumptive Ce	rtainty" status				
А	A Were all samples received in a condition consistent with those described on the Chain-of- Custody, properly preserved (including temperature) in the field or laboratory, and ⊠ Yes □ N prepared/analyzed within method holding times?									
В	B Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?									
С	c Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?									
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data"?									
Е	E VPH, EPH, APH, and TO-15 only a. VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications). b. APH and TO-15 Methods only: Was the complete analyte list reported for each method?									
F					conformances identifie					
Res	-	-		•	mptive Certainty" st	tatus				
G	Were the protocol		or below all CAM repor	ting limits specified in	the selected CAM	⊠ Yes □ No¹				
	<u>Data User Note</u> : Data that achieve "Presumptive Certainty" status may not necessarily meet the data usability and representativeness requirements described in 310 CMR 40. 1056 (2)(k) and WSC-07-350.									
Н										
I	Were res	sults reported for the	e complete analyte list	specified in the select	ted CAM protocol(s)?	⊠ Yes □ No ¹				
¹ All I	negative r	esponses must be	addressed in an attac	ched laboratory narra	ative.					
respo	I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this analytical report is, to the best of my knowledge and belief, is accurate and complete.									
Sign	ature: 🖗	AOULA		Positio	on: Laboratory Director					
Printed Name: Richard Warila Date: 10/6/2023										