# Zero Net Carbon Building Zoning

City of Salem, SERC Committee

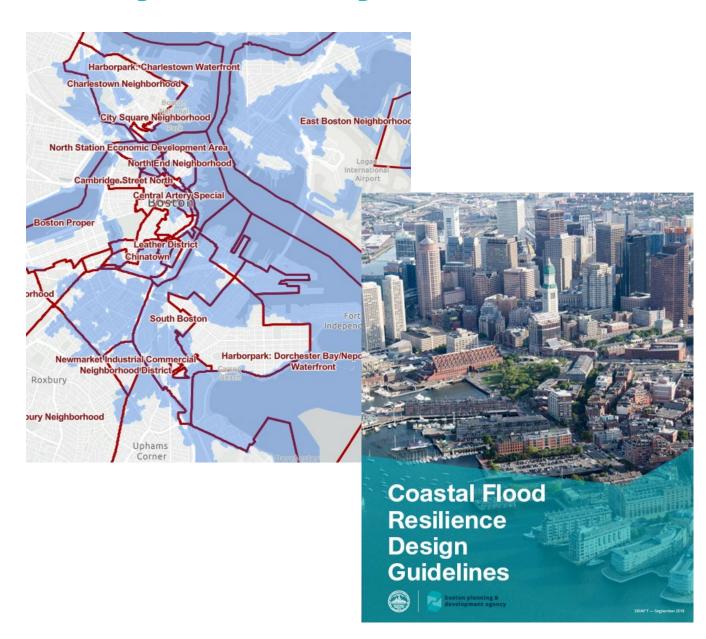


### Slide Index

- Article 37 Overview
- Article 37 Updates
- ZNC Policy Framework
- ZNC Policy and Standards
- Construction Emissions Minimization
- Operational Emissions: Approaches
- Operational Emissions: Mitigation
- Best Practice: 380 Stuart St
- Best Practice: Bartlett Station The Kenzi
- Best Practice: Landmark Center Phase III



# **Coastal Flood Resiliency Overlay District**


**Zoning Article 25A** 

### **Resilience Review**

- Overlay = 2070 1% chance coastal storm event with 40" SLR
- Projects 20,000 SF+
- Compliance:
  - Respond to SLR DFE
  - Coastal Resilience Guidelines
  - **o** Use limitations
  - Dimensional allowances

#### **Project Reviews:**

- 67 projects 19 approved
- 30M 3.5M SF approved



# Article 37 Green Buildings / IGBC Review

- Applicable to all 80B Large Projects (50k SF)
- Comprehensive sustainable development standards
  - LEED Gold typical / Certified is minimum
  - Carbon Neutral Building Assessment (CNBA) assesses inclusion of ZNC building strategies
- IGBC (Interagency Green Building Committee)
  - Oversees A37 compliance & conducts reviews
  - Staffing: BPDA 3+2, Environment Dept. 2
- Compliance Review Phases
  - Initial Filing Approval
  - Design Approval / Building Permit
  - Construction Approval / Occupancy Permit
- Building Review Activity
  - 2021 Reviews: 142 Buildings / 40 M SF
  - o 2022 Reviews to date: 64 Buildings / 14.3 M SF

# **2021 Performance Average 26.8% below Code**

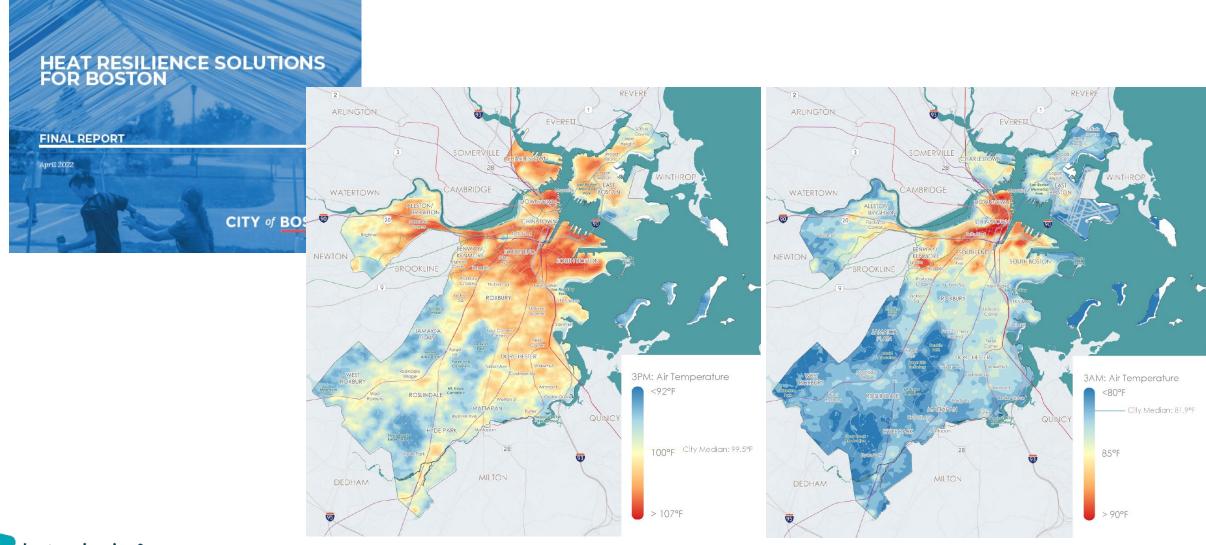
- 7 Platinum (5%)
- 99 Gold (70%)
- 34 Silver (24%)
- 2 Certified (1%)

#### **2022 Performance**

#### Average 32.7% below Code

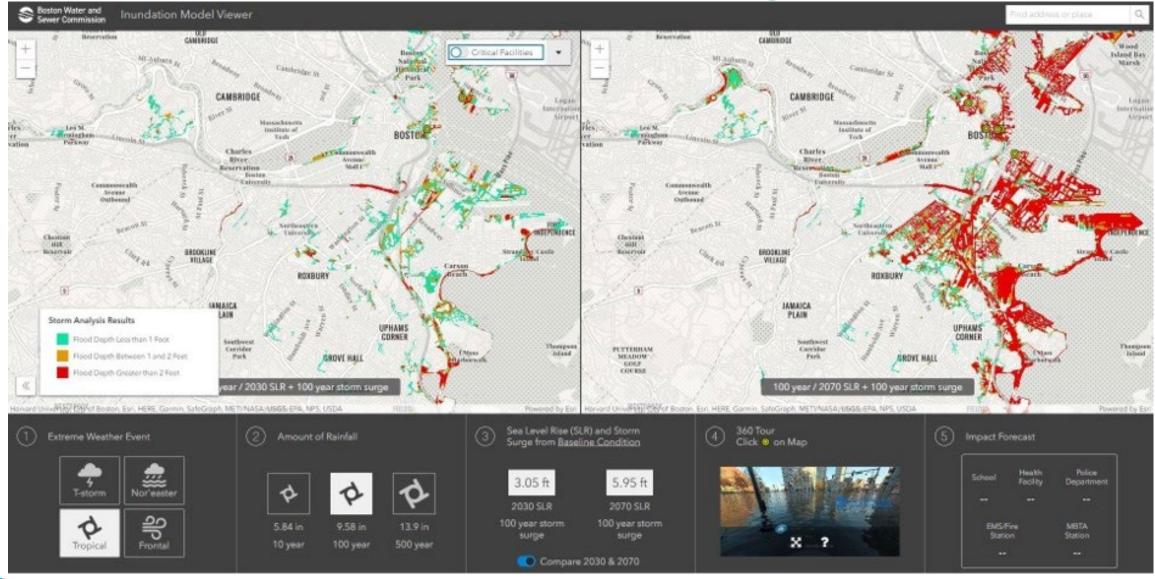
- 1 Platinum (2%)
- 50 Gold (78%)
- 11 Silver (17%)
- 2 Certified (3%)




# **Smart Utilities Article 80 Policy**

|                           | Article 80 Size Threshold                                        | Specifications                                                                                     |
|---------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| District Energy Microgrid | >1.5 million SF                                                  | Feasibility Assessment; if feasible, then Master Plan & District Energy Microgrid Ready design     |
| Green Infrastructure      | >100,000 SF                                                      | Install to retain 1.25" rainfall on impervious areas (Increase from 1" currently required by BWSC) |
| Adaptive Signal Tech.     | All projects requiring signal installation or improvements       | Install AST & related components into the traffic signal system network                            |
| Smart Street Lights       | All Projects requiring street light installation or improvements | Install additional electrical connection & fiber optics at pole                                    |
| Telecom Utilidor          | >1.5M SF of Development, or<br>>0.5 Miles of Roadway             | Install Telecom Utilidor                                                                           |

TOTAL GSF currently under BSU review = ~33 million GSF 44% or ~14 million GSF include District Energy Feasibility Studies




# **Heat Resiliency**





# **Precipitation Stormwater Managment**





#### COASTAL FLOODING VULNERABILITY 36" SLR - 2070s to 2100 SOMERVILLE WINTHROP EAST BOSTON CAMBRIDGE WATERTOWN ALLSTON/ BACK BAY DOWNTOWN BRIGHTON FENWAY/ NEWTON KENMORE SOUTH END SOUTH BOSTON BROOKLINE ROXBURY DORCHESTER JAMAICA PLAIN FLOOD PROGRESSION MAP 36" SLR - 2070s or later MATTAPAN ROSLINDALE Average Monthly High Tide WEST ROXBURY 10% Annual Chance Flood 1% Annual Chance Flood QUINCY Major Roads HYDE PARK

# **Article 37 & ZNC Policy - Overview**

### **Covered Buildings:**

 New construction buildings that are 20,000 SF or larger (excluding parking) or add 15 or more new housing units.

### **Building Requirements:**

- Reduce or mitigate adverse impacts.
- **LEED Gold.**
- Low carbon building practices and use renewable energy sufficent to annually achieve net zero carbon emissions.
- Annually report ZNC building performance using the BERDO portal.

# **ZNC Policy Framework**

#### **Prioritized Practices:**

### 1. Low Carbon Building

- Embodied Carbon Assess & include best practices, advance standards & practices
- Operational Emissions Determine
   & meet building emission targets
- 2. Renewable Energy Solar PV
  Set Minimum Generation Standards
- 3. Renewable Energy Procurement Multiple Options



### Bunker Hill Housing – Building F

Residential - Affordable / Market Rate 271,844 SF - High Occupant Desity / High Rise

Low Carbon Building - Operations pCEI = 1.48 kg CO2e / sf-yr (EUI 19.1)

Renewable Energy - Solar PV (82 kW = 104 mWh/yr) pCEI 0.12 kg CO2e / sf- yr (reduction)

Renewable Energy – Procurement Boston Community Choice (optional)



# **ZNC** Reporting

ZNC and BERDO are paired policies with aligned standards

## **Annual Reporting per BERDO 2.0**

- Applicable to all ZNC permitted projects
- Applicable at building occupancy
- Carbon emissions limit is net zero
- Renewable energy procurement follows BERDO standards

# **CONSTRUCTION EMISSIONS MINIMIZATION MEASURES Reduce Construction Operation Carbon Emissions**

Include best practices for mitigation measures, including:

- Temporary Lighting
- Renewable Electricity procure 100% renewable electricity.
- Low and no-carbon emission vehicles / equipment and sequencing

# Minimize Demolition, Construction & Building Materials Embodied Carbon

Recognizing the emerging status of industry and practice standards, include best practices and LEED Materials & Resources prerequisites and credits:

- Construction and Demolition Waste Management;
- Building Refrigerant Management;
- Building Life-Cycle Impact Reduction;
- Building Product Disclosure and Optimization; and
- Low embodied carbon structural designs, materials, and systems.



### **Minimization Building Operational Carbon Emissions**

Allows two approaches and sets "targets":

### **Approach 1 - Predictive Performance Comparative Analysis**

Projects attain a 40% carbon emissions reduction compared to modeled performance of the Stretch Code (ASHRAE 90.1-2013 with MA amendments) or LEED baseline (ASHRAE 90.1 version used for LEED credit determination).

#### Except:

- 1. Licensed healthcare facilities that are not medical office buildings, which should meet a 30% carbon emissions reduction target.
- 2. Residential buildings that do NOT trigger stretch code AND the total area of any non-residential program is less than 40,000 GSF and does not exceed 50% of total GSF these building must meet a HERS score 38 or lower.
- 3. Buildings committed to achieving Passive House certification via PHIUS+ or PHI.



### **Approach 2 - Use Specific Best Practice Performance**

Projects attain the Best Practice pCEI for specific building uses. Buildings with multiple uses should calculate a blended pCEI target.

| Primary Building Use Type      | kg CO2e/sf-yr | Notes                                              |
|--------------------------------|---------------|----------------------------------------------------|
| Multifamily (low density)      | 1.1           | Average Occupancy Density ≥ 500 SF/Person          |
| Multifamily (high density)     | 1.6           | Average Occupancy Density btw 220 to 500 SF/Person |
| Residence Hall                 | 1.6           |                                                    |
| Hotel                          | 1.9           |                                                    |
| K-12 School                    | 1.3           |                                                    |
| Office - College or University | 1.6           |                                                    |
| Office - Commercial            | 1.8           |                                                    |
| Retail & Service               | 1.6           |                                                    |
| Dry Lab                        | 4.3           |                                                    |
| Wet Lab                        | 6.4           |                                                    |
| Hospital                       | 7.4           | Not including medical office uses                  |

# **Article 37 & ZNC Review Process**

# A80 / A37 Building Planning & Review Sequence - Unchanged

Pre-Filing Initial Filing Design Filing Construction Filing

# **Building Performance Planning & Modeling**

- Project team determines planning and compliance pathways
- Selects preferred modeling platform
- Employs performance modeling in project planning
- Project team uses models to calculate CO2e emissions



# **BERDO 2.0 Key Features**

Building Emissions Reduction and Disclosure Ordinance

### Covered buildings:

- Non-residential buildings that are **20,000** ft<sup>2</sup> or larger (excluding parking)
- Residential buildings that have 15 or more units
- Any parcel with multiple buildings that sum to **20,000** ft² (excluding parking) or **15** units must report on all buildings
- Annual energy and water use reporting and disclosure.
- Covered buildings must achieve net-zero emissions by 2050.
  - Non-residential buildings that are  $35,000 \text{ ft}^2$  + and residential buildings with 35+ units have to meet declining emissions standards starting in 2025.
  - Non-residential buildings that are **20,000 34,999** ft<sup>2</sup> and residential buildings **15-34 units** have to meet declining emissions standards starting in **2030**.

### **Emissions Standards**

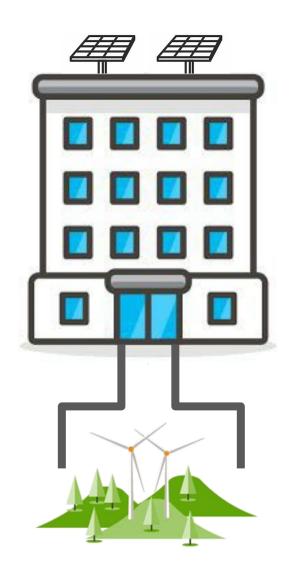
Established in the Ordinance

- Developed through the technical analysis process
- Based on existing buildings in Boston
- Aligned with citywide climate goals
- Multi-use buildings can adopt a blended emissions standard

| Duildingues                  | Emissions standard (kgCO <sub>2</sub> e/SF/yr.) |           |           |           |           |      |
|------------------------------|-------------------------------------------------|-----------|-----------|-----------|-----------|------|
| Building use                 | 2025-2029                                       | 2030-2034 | 2035-2039 | 2040-2044 | 2045-2049 | 2050 |
| Assembly                     | 7.8                                             | 4.6       | 3.3       | 2.1       | 1.1       | 0    |
| College/ University          | 10.2                                            | 5.3       | 3.8       | 2.5       | 1.2       | 0    |
| Education                    | 3.9                                             | 2.4       | 1.8       | 1.2       | 0.6       | 0    |
| Food Sales & Service         | 17.4                                            | 10.9      | 8.0       | 5.4       | 2.7       | 0    |
| Healthcare                   | 15.4                                            | 10.0      | 7.4       | 4.9       | 2.4       | 0    |
| Lodging                      | 5.8                                             | 3.7       | 2.7       | 1.8       | 0.9       | 0    |
| Manufacturing/<br>Industrial | 23.9                                            | 15.3      | 10.9      | 6.7       | 3.2       | 0    |
| Multifamily housing          | 4.1                                             | 2.4       | 1.8       | 1.1       | 0.6       | 0    |
| Office                       | 5.3                                             | 3.2       | 2.4       | 1.6       | 0.8       | 0    |
| Retail                       | 7.1                                             | 3.4       | 2.4       | 1.5       | 0.7       | 0    |
| Services                     | 7.5                                             | 4.5       | 3.3       | 2.2       | 1.1       | 0    |
| Storage                      | 5.4                                             | 2.8       | 1.8       | 1.0       | 0.4       | 0    |
| Technology/Science           | 19.2                                            | 11.1      | 7.8       | 5.1       | 2.5       | 0    |

### OPTIONS TO RETROFIT AND FUEL SWITCH

- Building owners may undertake measures to improve energy performance and reduce fossil fuel consumption within the building
  - Envelope improvements
  - Appliance and mechanical upgrades and switches (heat pumps, solar, geothermal)
  - Building operations and controls
- The City is expanding a Retrofit Resource Hub to connect building owners with appropriate technical assistance and financial resources.




Credit: Indiana Public Media

### OPTIONS TO PURCHASE RENEWABLE ELECTRICITY

# Renewable energy can be used to reduce emissions from a building's electricity use.

- 1. Deploy renewable energy onsite;
- 2. Purchase renewable electricity that is generated offsite.
  - Boston community choice electricity (<u>cityofbostoncce.com</u>)
  - MA Class I Renewable Energy Certificates from non-emitting renewable sources
  - Power purchase agreements, including virtual PPAs, for RECs from non-emitting renewable sources



### **ALTERNATIVE COMPLIANCE PAYMENT**

- Additional option to meet emissions standards
- Tied to average retrofit cost per metric ton of CO<sub>2</sub>e, estimated at \$234/mtCO2e
- Paid into a new Equitable
   Emissions Investment Fund



# **ZNC Building Programs**



# MTA Round Two Now Open!

Second and Final Funding Round

- Buildings 9 to 18+ Stories Tall
- Funding & TA to assess benefits of Mass Timber practices

Apps Due: 5pm, October 28<sup>th</sup>





# **THANK YOU!**

- Stop in during our Office Hours & Feedback Meeting
- Submit online comments
- Email: John.Dalzell@boston.gov

# **Article 37 Zoning Updates**

### **Proposed Zoning Changes – Part 1/3:**

- Applicability Threshold
- LEED Gold
- Removes "Boston Green Building Credits"
- Establishes annual net Emissions performance standard of zero kg of Carbon Dioxide Equivalent (CO2e) / sf-yr.

# **Article 37 Zoning Updates**

### **Proposed Zoning Changes – Part 2/3:**

- Construction Emissions Minimization Measures
  - Construction site activities
  - Building construction materials, products, and waste
- Operational Emissions Minimization Measures
- Operational Emissions Mitigation Measures
  - Generate on-site renewable energy
  - Purchase renewable electricity
  - Alternative Compliance Payments for on-site fossil fuel emissions



# **Article 37 Zoning Updates**

### **Proposed Zoning Changes – Part 3/3:**

- Modifies building height to exclude solar PV panels from building height (up to 48" above roof) and parking structures (up to 10' plus 48" above parking deck).
- Updates the Article 80E Small Project Application & Review Standards
  - Adds Sustainability Component and references to Article 37

Sets Energy Emission Factors for calculating CO2e emissions

### **Greenhouse Gas Emission Factors for Common Energy Sources**

- . 2035 Grid Electricity: 392 lbs CO2e / MWh = 177.8 kg CO2e / MWh = 52 kg CO2e / MBtu
- Natural Gas: 117 lbs / MBtu = 53.11 kg CO2e / MBtu = 5.31 kg CO2e / therm
- . District Steam<sup>3, 4</sup>: 193 lbs / MBtu = 87.5 kg CO2e / MBtu

#### Notes:

- 1. All GHG emission factors will be reviewed on an annual basis and may be amended from time to time by the BRA.
- 2. The forecasted Grid Electricity emission factors are design standards.
- 3. As calculated by Massachusetts DOER for determining CO2e emissions from Vicinity provided District Steam to Mass General Hospital's recent building project
- 4. Alternative distributed thermal energy system GHG emission factors, with supporting analysis and reporting, may be consider.



### **Operational Mitigation Measures**

- 1. Mitigation of electricity emissions: On-site production of Renewable Energy If needed as a mitigation measure, the minimum area cumulatively equals:
  - 50% of the building roof area(s)
  - 90% of the area of any uncovered parking structure deck(s); and
  - 5% of unoccupied paved or hardscaped site areas.

#### With exceptions and exclusions for:

- Building mechanical and structural systems
- Areas are shaded for more than 30 percent of daylight hours annually.
- Uses and/or mature trees of environmental or aesthetic value
- Historic preservation, building, fire, or environmental requirements
- Grid interconnection standards.

And an Installation Time Extension for equipment supply, and changes in incentives, and interconnection standards.



### **Operational Mitigation Measures**

- 2. Mitigation of electricity use emissions: Renewable Electricity Purchases If needed as a mitigation of electricity-use Emissions, projects shall: (a) purchasing renewable electricity, (b) purchasing Renewable Energy Certificates, (c) entering into a Power Purchase Agreement, or (d) any other Compliance Mechanism identified in BERDO.
- 3. Mitigation of non-electricity use emissions: Alternative Compliance Payments If needed as mitigation measure for non- electricity emissions, projects shall make then Alternative Compliance Payments pursuant to BERDO.

### THREE EIGHTY STUART



# BY THE NUMBERS

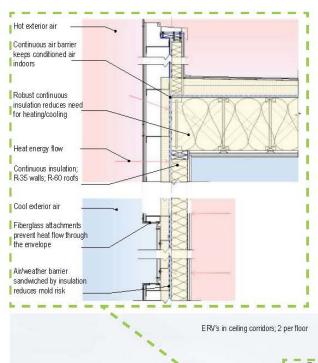
- 625,000 SF Office Building
- 22 Terraces + I Roof Deck
- 100% Outside Air with High Efficiency Filtration
- Modeled CEI: 1.35 kgCO2e/ft2
- Modeled EUI: 25 kBTU/ft2-yr
- Zero Net Carbon from Operations

### THE APPROACH

- Reduce energy consumption by maximizing envelopment performance and efficiency of systems
- Utilize heat pumps as the tool to electrify the HVAC system
- Purchase green power directly or through the purchase of RECs

## DESIGN FEATURES

- High-performance envelope with triple pane glazing
- Heat recovery chiller
- Air source heat pumps
- DOAS with highly efficient energy recovery wheel
- Backup electric resistance boiler
- Chilled beams in lieu of VAVs

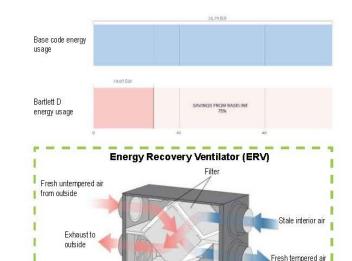

# THE CHALLENGES

- Cost
- Systems implementation & limitations
- Green power purchase

Home



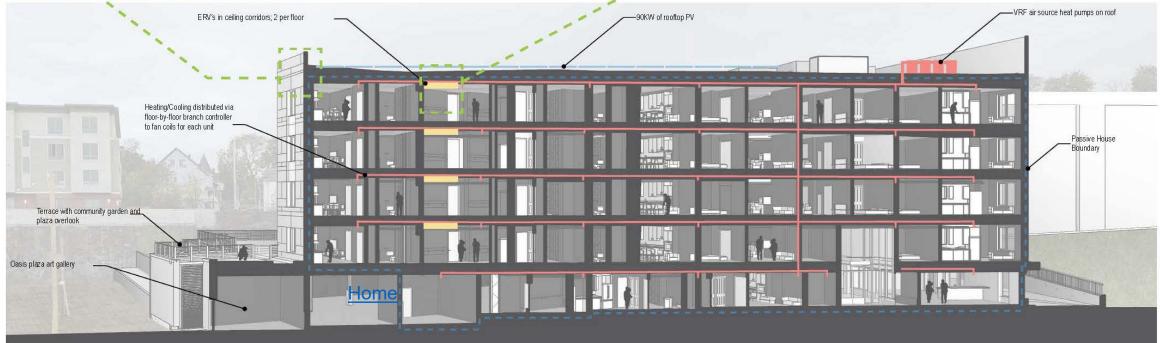
#### RESIDENTIAL




#### **Resilient Infrastructure**

- · Generator/battery power on roof of building
- Passive House envelope slows any heat loss/ gain in the event of a utility outage, allowing the generator/battery to be downsized
- ~90kW of solar PV array on roof to minimize dependence on external utilities for power
- Rear of site features a bioswale to collect and filter water runoff from adjacent site above

#### **Extreme Temps**


- Passive House enclosure mitigates extreme temperature swings and will provide a healthy, efficiently conditioned interior environment.
- Habitable landscaped garage roof mitigates heat island effect, producing an oasis of cooled area on a southern exposure.



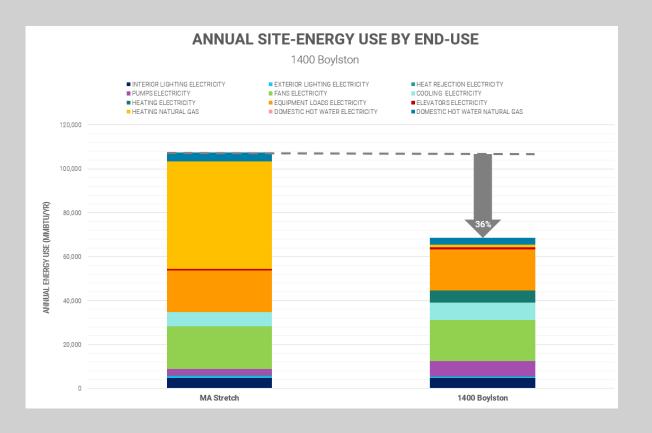
Heat exchanger

#### **Carbon Reduction**

- Aim toward lower embodied carbon materials, and much less Greenhouse Gas (GHG) emitting materials
- Operational carbon reduced via renewables on the roof and energy efficient Passive House enclosure
- High efficiency ERVs paired with air source heat pumps take advantage of existing energy in the air to control interior air and domestic water temperatures.
- Predicted EUI: 14.07 kBtu/SF/yr (75% reduction from baseline code)






# **Net Zero Carbon BPDA Case Study**







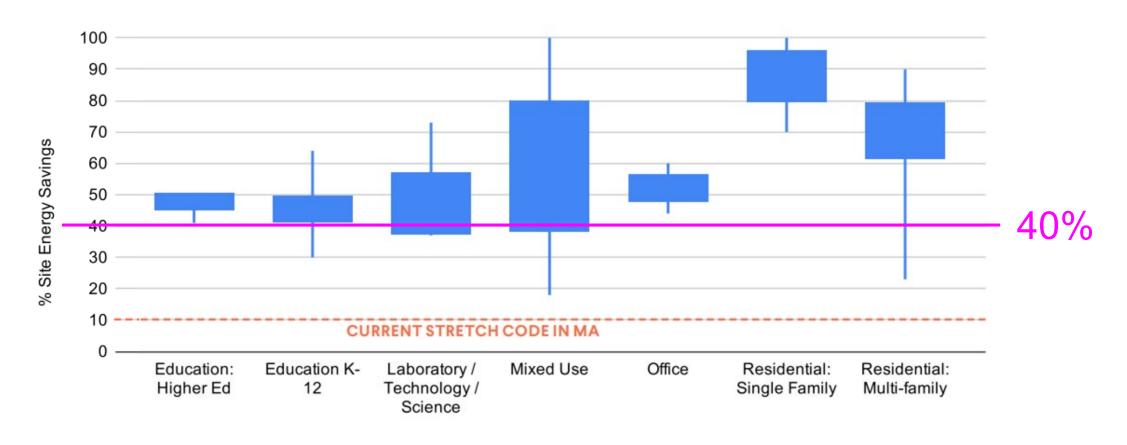
# **Net Zero Carbon - Life Science Approach**



#### **Several Hybrid Electric Projects Under Development**

#### Highlights:

- 95%+ reduction in fossil fuels; shift energy use to electric
- Carbon emissions reduction of up to 40+%
- Renewable sources/RECs
- Thermal envelope; high performance systems


#### **Considerations for future implementation:**

- Cost
- Implications for penthouse size/height





### **Percent Carbon Reduction**



Source: Built Environment Plus - Massachusetts is Ready for Net Zero 2021 report





# **Recommended Pathway**

# Low Carbon Emitting Building - Carbon Emission Intensity (CEI) Targets

The following building typologies must aim to meet CEI targets below:

| Building Typology           | CEI Targets [kg CO2e/sf]<br>Recommended | All electric site EUI<br>[kBtu/sf-yr]<br>(for reference only) |
|-----------------------------|-----------------------------------------|---------------------------------------------------------------|
| Office                      | 1.6                                     | 30                                                            |
| College / University Office | 1.6                                     | 30                                                            |
| K-12 School                 | 1.3                                     | 25                                                            |
| Hotel                       | 1.9                                     | 35                                                            |
| Residence Hall              | 1.6                                     | 30                                                            |
| Low Density Multifamily     | 1.1                                     | 20                                                            |
| High Density Multifamily    | 1.6                                     | 30                                                            |
| Dry Lab                     | 4.3                                     | 80                                                            |
| Wet Lab                     | 6.4                                     | 120                                                           |
| Hospital                    | 7.4                                     | 139                                                           |

- Targets are calculated using predicted 2035 carbon emission factors for electricity of 52 kg/MMBtu and current carbon emission factors as published by BERDO.
- Projects that are composed of more than one listed building typology should use a target based on area weighted average.
- Projects with unique conditions (e.g. schedules, loads, etc.) meeting the 40% carbon emissions reduction but not meeting the CEI target should have an opportunity to make a case for an adjusted value.







# **Carbon Emissions Factors**

- Consistent Emission Factors should be used for BERDO and ZNC Zoning
- 2035 Grid Electricity emission factors should be used to more accurately represent the average mid-point lifespan of MEP system equipment

#### **BERDO Aligned Carbon Emissions Factor**

| Fuel type                            | Emission factor<br>(kg CO₂e/MMBtu) |
|--------------------------------------|------------------------------------|
| Natural Gas                          | 53.11                              |
| Fuel Oil (No. 1)                     | 73.50                              |
| Fuel Oil (No. 2)                     | 74.21                              |
| Fuel Oil (No. 4)                     | 75.29                              |
| Diesel Oil                           | 74.21                              |
| District Steam                       | 66.40                              |
| District Hot Water                   | 66.40                              |
| Electric Driven Chiller              | 52.70                              |
| Absorption Chiller using Natural Gas | 73.89                              |
| Engine-Driven Chiller Natural Gas    | 49.31                              |

#### Notes:

- For service in Boston, DOER has recently calculated the District Steam Emission Factor to be 87.54 kg CO2e/MMBtu
- 2. For Grid Electricity, the 2035 Emission Factor is 52 kg CO2e/MMBtu







### **SKANSKA**

Skanska is a 135-year-old global real estate development and construction company founded in Stockholm, Sweden.

We are leading the way towards a greener industry setting the goal to be carbon neutral across our entire value chain by 2045.

#### **Embodied Carbon**

Use Embodied Carbon in Construction Calculator (EC3) tool to inform material supply decisions to reduce embodied carbon



<u>Home</u>



### **Operational Carbon**

Design our buildings to minimize energy consumption and achieve meaningful reductions in carbon emissions.

### THREE EIGHTY STUART



# BY THE NUMBERS

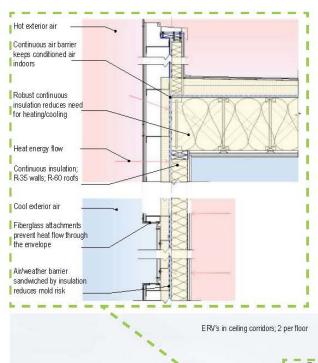
- 625,000 SF Office Building
- 22 Terraces + I Roof Deck
- 100% Outside Air with High Efficiency Filtration
- Modeled CEI: 1.35 kgCO2e/ft2
- Modeled EUI: 25 kBTU/ft2-yr
- Zero Net Carbon from Operations

### THE APPROACH

- Reduce energy consumption by maximizing envelopment performance and efficiency of systems
- Utilize heat pumps as the tool to electrify the HVAC system
- Purchase green power directly or through the purchase of RECs

## DESIGN FEATURES

- High-performance envelope with triple pane glazing
- Heat recovery chiller
- Air source heat pumps
- DOAS with highly efficient energy recovery wheel
- Backup electric resistance boiler
- Chilled beams in lieu of VAVs

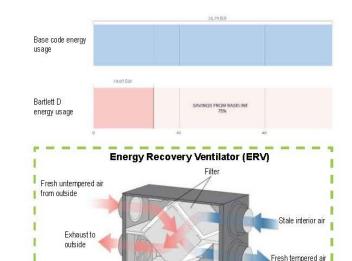

# THE CHALLENGES

- Cost
- Systems implementation & limitations
- Green power purchase

Home



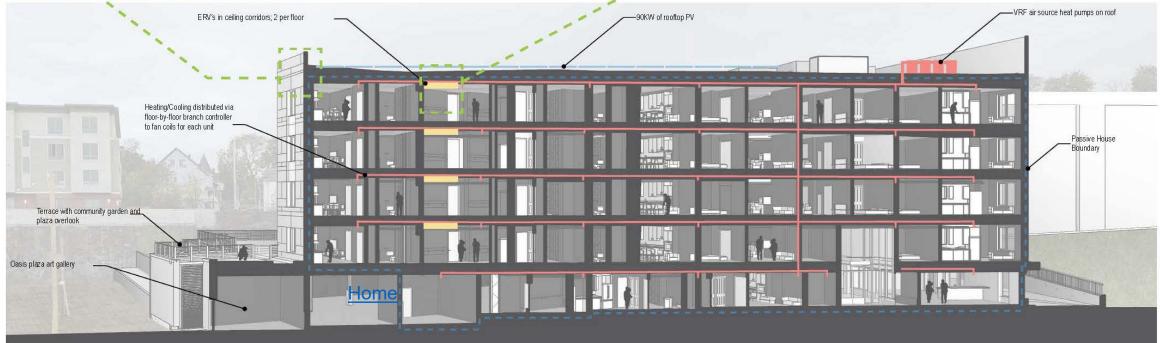
#### RESIDENTIAL




#### **Resilient Infrastructure**

- · Generator/battery power on roof of building
- Passive House envelope slows any heat loss/ gain in the event of a utility outage, allowing the generator/battery to be downsized
- ~90kW of solar PV array on roof to minimize dependence on external utilities for power
- Rear of site features a bioswale to collect and filter water runoff from adjacent site above

#### **Extreme Temps**


- Passive House enclosure mitigates extreme temperature swings and will provide a healthy, efficiently conditioned interior environment.
- Habitable landscaped garage roof mitigates heat island effect, producing an oasis of cooled area on a southern exposure.



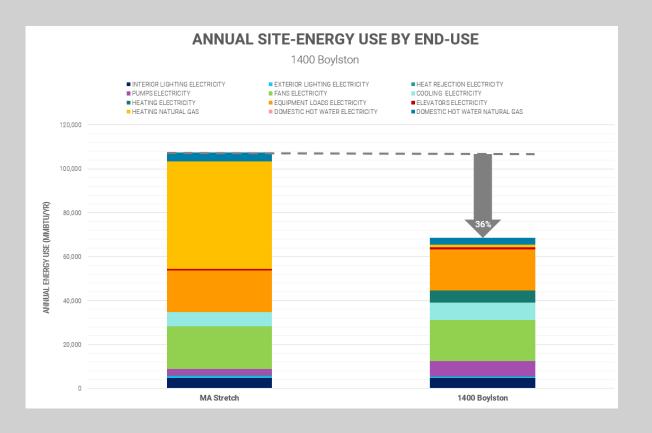
Heat exchanger

#### **Carbon Reduction**

- Aim toward lower embodied carbon materials, and much less Greenhouse Gas (GHG) emitting materials
- Operational carbon reduced via renewables on the roof and energy efficient Passive House enclosure
- High efficiency ERVs paired with air source heat pumps take advantage of existing energy in the air to control interior air and domestic water temperatures.
- Predicted EUI: 14.07 kBtu/SF/yr (75% reduction from baseline code)






# **Net Zero Carbon BPDA Case Study**







# **Net Zero Carbon - Life Science Approach**



#### **Several Hybrid Electric Projects Under Development**

#### Highlights:

- 95%+ reduction in fossil fuels; shift energy use to electric
- Carbon emissions reduction of up to 40+%
- Renewable sources/RECs
- Thermal envelope; high performance systems

#### **Considerations for future implementation:**

- Cost
- Implications for penthouse size/height



